cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343960 Triangle read by rows: T(n,m) = Sum_{k=1..m} (k/n)*binomial(n,m-k)*binomial(n,m), n >= m >= 1.

This page as a plain text file.
%I A343960 #13 Jun 06 2021 00:51:09
%S A343960 1,1,2,1,5,4,1,9,17,8,1,14,46,49,16,1,20,100,180,129,32,1,27,190,510,
%T A343960 603,321,64,1,35,329,1225,2121,1827,769,128,1,44,532,2618,6202,7700,
%U A343960 5164,1793,256,1,54,816,5124,15876,26628,25392,13878,4097,512
%N A343960 Triangle read by rows: T(n,m) = Sum_{k=1..m} (k/n)*binomial(n,m-k)*binomial(n,m), n >= m >= 1.
%F A343960 T(n,m) = Sum_{k=1..m} (k/n)*binomial(n,m-k)*binomial(n,m).
%F A343960 G.f.: N(x,y)/(1-N(x,y)), where N(x,y) is a g.f. for the Narayana numbers A001263.
%F A343960 T(n, m) = A001263(n, m)*hypergeom([1 - m, 2], [n - m + 2], -1). - _Peter Luschny_, May 06 2021
%e A343960 Triangle begins:
%e A343960   ---------------------------------------------------------------------
%e A343960    n \ m |     1     2     3     4     5     6     7     8     9    10
%e A343960   -------+-------------------------------------------------------------
%e A343960    1     |     1
%e A343960    2     |     1     2
%e A343960    3     |     1     5     4
%e A343960    4     |     1     9    17     8
%e A343960    5     |     1    14    46    49    16
%e A343960    6     |     1    20   100   180   129    32
%e A343960    7     |     1    27   190   510   603   321    64
%e A343960    8     |     1    35   329  1225  2121  1827   769   128
%e A343960    9     |     1    44   532  2618  6202  7700  5164  1793   256
%e A343960    10    |     1    54   816  5124 15876 26628 25392 13878  4097   512
%t A343960 T[n_, m_] := Sum[Binomial[n, m - k] * Binomial[n, m] * k/n, {k, 1, n}]; Table[T[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* _Amiram Eldar_, May 06 2021 *)
%o A343960 (Maxima)
%o A343960 T(n,m):=sum((k/n)*binomial(n,m-k)*binomial(n,m),k,1,m)
%Y A343960 Cf. A001263.
%K A343960 nonn,tabl
%O A343960 1,3
%A A343960 _Yuriy Shablya_, May 05 2021