This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343967 #17 May 10 2024 02:17:06 %S A343967 161568,262683,314712,326808,359568,443197,444536,471960,503208, %T A343967 513729,515376,526023,529199,532683,552824,597960,702729,736371, %U A343967 746992,806688,844416,863379,907479,924048,931419,975213,1011067,1028663,1062937,1092853,1152152,1172016,1211048,1232496,1258011 %N A343967 Numbers that are the sum of three positive cubes in five or more ways. %H A343967 David Consiglio, Jr., <a href="/A343967/b343967.txt">Table of n, a(n) for n = 1..20000</a> %e A343967 314712 = 4^3 + 6^3 + 68^3 %e A343967 = 5^3 + 24^3 + 67^3 %e A343967 = 6^3 + 30^3 + 66^3 %e A343967 = 31^3 + 41^3 + 60^3 %e A343967 = 36^3 + 48^3 + 54^3 %e A343967 so 314712 is a term of this sequence. %o A343967 (Python) %o A343967 from itertools import combinations_with_replacement as cwr %o A343967 from collections import defaultdict %o A343967 keep = defaultdict(lambda: 0) %o A343967 power_terms = [x**3 for x in range(1,50)] %o A343967 for pos in cwr(power_terms,3): %o A343967 tot = sum(pos) %o A343967 keep[tot] += 1 %o A343967 rets = sorted([k for k,v in keep.items() if v >= 5]) %o A343967 for x in range(len(rets)): %o A343967 print(rets[x]) %Y A343967 Cf. A025333, A051167, A343968, A343970, A343987, A344364, A345083. %K A343967 nonn %O A343967 1,1 %A A343967 _David Consiglio, Jr._, May 05 2021