This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343970 #9 Jul 31 2021 23:41:31 %S A343970 161568,262683,314712,326808,359568,443197,444536,471960,503208, %T A343970 513729,515376,526023,529199,532683,552824,597960,702729,736371, %U A343970 746992,806688,844416,863379,907479,924048,931419,975213,1011067,1028663,1062937,1092853,1152152,1172016,1211048,1232496,1258011 %N A343970 Numbers that are the sum of three positive cubes in exactly five ways. %C A343970 This sequence differs from A343967 at term 40 because 1296378 = 3^3 + 76^3 + 95^3 = 9^3 + 33^3 + 108^3 = 21^3 + 77^3 + 94^3 = 31^3 + 59^3 + 102^3 = 33^3 + 81^3 + 90^3 = 60^3 + 75^3 + 87^3. %H A343970 David Consiglio, Jr., <a href="/A343970/b343970.txt">Table of n, a(n) for n = 1..20000</a> %o A343970 (Python) %o A343970 from itertools import combinations_with_replacement as cwr %o A343970 from collections import defaultdict %o A343970 keep = defaultdict(lambda: 0) %o A343970 power_terms = [x**3 for x in range(1,50)] %o A343970 for pos in cwr(power_terms,3): %o A343970 tot = sum(pos) %o A343970 keep[tot] += 1 %o A343970 rets = sorted([k for k,v in keep.items() if v == 5]) %o A343970 for x in range(len(rets)): %o A343970 print(rets[x]) %Y A343970 Cf. A025325, A343967, A343969, A343986, A344365, A345084. %K A343970 nonn %O A343970 1,1 %A A343970 _David Consiglio, Jr._, May 05 2021