cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343986 Numbers that are the sum of four positive cubes in exactly five ways.

This page as a plain text file.
%I A343986 #13 Jul 23 2025 16:02:45
%S A343986 5105,5131,5616,5859,6435,7777,9315,9737,9793,10017,10250,10458,10936,
%T A343986 10962,11000,11060,11088,11592,11664,11781,12168,12229,12285,12320,
%U A343986 12385,12392,12707,13384,13734,13832,13904,14183,14239,14833,15176,15596,15624,15752,15759,15778,16093,16289,16354,16480,16569
%N A343986 Numbers that are the sum of four positive cubes in exactly five ways.
%C A343986 Differs from A343987 at term 6 because 6883 = 2^3 + 2^3 + 2^3 + 19^3 = 2^3 + 5^3 + 15^3 + 15^3 = 3^3 + 8^3 + 8^3 + 18^3 = 4^3 + 11^3 + 14^3 + 14^3 = 5^3 + 11^3 + 11^3 + 16^3 = 8^3 + 9^3 + 9^3 + 17^3.
%H A343986 David Consiglio, Jr., <a href="/A343986/b343986.txt">Table of n, a(n) for n = 1..20000</a>
%e A343986 5616 is a term because 5616 = 1^3 + 8^3 + 12^3 + 15^3 = 2^3 + 8^3 + 10^3 + 16^3 = 4^3 + 4^3 + 14^3 + 14^3 = 4^3 + 5^3 + 11^3 + 16^3 = 8^3 + 9^3 + 10^3 + 15^3.
%o A343986 (Python)
%o A343986 from itertools import combinations_with_replacement as cwr
%o A343986 from collections import defaultdict
%o A343986 keep = defaultdict(lambda: 0)
%o A343986 power_terms = [x**3 for x in range(1,50)]
%o A343986 for pos in cwr(power_terms,4):
%o A343986     tot = sum(pos)
%o A343986     keep[tot] += 1
%o A343986 rets = sorted([k for k,v in keep.items() if v == 5])
%o A343986 for x in range(len(rets)):
%o A343986     print(rets[x])
%Y A343986 Cf. A025361, A343970, A343972, A343987, A343988, A344357, A345149.
%K A343986 nonn
%O A343986 1,1
%A A343986 _David Consiglio, Jr._, May 06 2021