cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343987 Numbers that are the sum of four positive cubes in five or more ways.

This page as a plain text file.
%I A343987 #19 May 10 2024 02:16:37
%S A343987 5105,5131,5616,5859,6435,6883,7777,9315,9737,9793,10017,10250,10458,
%T A343987 10936,10962,11000,11060,11088,11592,11664,11781,12168,12229,12285,
%U A343987 12320,12385,12392,12411,12707,13104,13384,13734,13832,13904,13923,14112,14183,14239,14581,14833,14896,14904,15176,15561,15596
%N A343987 Numbers that are the sum of four positive cubes in five or more ways.
%H A343987 David Consiglio, Jr., <a href="/A343987/b343987.txt">Table of n, a(n) for n = 1..20000</a>
%e A343987 5616 = 1^3 + 8^3 + 12^3 + 15^3
%e A343987      = 2^3 + 8^3 + 10^3 + 16^3
%e A343987      = 4^3 + 4^3 + 14^3 + 14^3
%e A343987      = 4^3 + 5^3 + 11^3 + 16^3
%e A343987      = 8^3 + 9^3 + 10^3 + 15^3
%e A343987 so 5616 is a term.
%o A343987 (Python)
%o A343987 from itertools import combinations_with_replacement as cwr
%o A343987 from collections import defaultdict
%o A343987 keep = defaultdict(lambda: 0)
%o A343987 power_terms = [x ** 3 for x in range(1, 50)]
%o A343987 for pos in cwr(power_terms, 4):
%o A343987     tot = sum(pos)
%o A343987     keep[tot] += 1
%o A343987 rets = sorted([k for k, v in keep.items() if v >= 5])
%o A343987 for x in range(len(rets)):
%o A343987     print(rets[x], end=", ")
%Y A343987 Cf. A025370, A343967, A343971, A343986, A343989, A344356, A345148.
%K A343987 nonn
%O A343987 1,1
%A A343987 _David Consiglio, Jr._, May 06 2021