This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343989 #14 May 10 2024 02:20:49 %S A343989 1765,1980,2043,2104,2195,2250,2430,2449,2486,2491,2493,2547,2584, %T A343989 2592,2738,2745,2764,2817,2888,2915,2953,2969,2979,3095,3096,3133, %U A343989 3142,3186,3188,3214,3240,3249,3275,3277,3310,3312,3366,3403,3422,3459,3464,3466,3483,3492,3520,3529,3583,3608,3627,3653,3664,3671 %N A343989 Numbers that are the sum of five positive cubes in five or more ways. %H A343989 David Consiglio, Jr., <a href="/A343989/b343989.txt">Table of n, a(n) for n = 1..20000</a> %e A343989 2043 = 1^3 + 4^3 + 5^3 + 5^3 + 12^3 %e A343989 = 2^3 + 2^3 + 3^3 + 10^3 + 10^3 %e A343989 = 2^3 + 3^3 + 4^3 + 6^3 + 12^3 %e A343989 = 4^3 + 5^3 + 5^3 + 9^3 + 10^3 %e A343989 = 4^3 + 6^3 + 6^3 + 6^3 + 11^3 %e A343989 so 2043 is a term. %o A343989 (Python) %o A343989 from itertools import combinations_with_replacement as cwr %o A343989 from collections import defaultdict %o A343989 keep = defaultdict(lambda: 0) %o A343989 power_terms = [x**3 for x in range(1,50)] %o A343989 for pos in cwr(power_terms,5): %o A343989 tot = sum(pos) %o A343989 keep[tot] += 1 %o A343989 rets = sorted([k for k,v in keep.items() if v >= 5]) %o A343989 for x in range(len(rets)): %o A343989 print(rets[x]) %Y A343989 Cf. A343987, A343988, A344034, A344358, A344798, A345174, A345514. %K A343989 nonn %O A343989 1,1 %A A343989 _David Consiglio, Jr._, May 06 2021