This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344007 #46 Jun 09 2021 12:33:46 %S A344007 1,2,2,6,3,2,6,4,4,3,15,6,5,4,4,12,15,6,6,5,4,12,28,15,7,6,6,5,40,12, %T A344007 28,8,15,7,6,6,18,40,12,28,9,8,15,7,6,18,15,40,12,10,28,9,8,15,7,77, %U A344007 18,15,40,12,11,10,28,9,8,15,20,77,18,15,40,12,12,11,10,28,9,8 %N A344007 Denominators of triangle formed by beginning with 1 on row 1, then producing row n by replacing the largest value on row n-1, k, by 1/n and k - 1/n, and arranging the entries in order from smallest to largest. %C A344007 If there is more than one copy of the largest entry in row n-1, only one copy is changed. %C A344007 For a somewhat similar triangle, see Leibniz's Harmonic Triangle A003506. - _N. J. A. Sloane_, Jun 09 2021 %e A344007 The triangle's first 10 rows: %e A344007 1 %e A344007 1/2, 1/2 %e A344007 1/6, 1/3, 1/2 %e A344007 1/6, 1/4, 1/4, 1/3 %e A344007 2/15, 1/6, 1/5, 1/4, 1/4 %e A344007 1/12, 2/15, 1/6, 1/6, 1/5, 1/4 %e A344007 1/12, 3/28, 2/15, 1/7, 1/6, 1/6, 1/5 %e A344007 3/40, 1/12, 3/28, 1/8, 2/15, 1/7, 1/6, 1/6 %e A344007 1/18, 3/40, 1/12, 3/28, 1/9, 1/8, 2/15, 1/7, 1/6 %e A344007 1/18, 1/15, 3/40, 1/12, 1/10, 3/28, 1/9, 1/8, 2/15, 1/7 %e A344007 ... %e A344007 The denominators are: %e A344007 1 %e A344007 2, 2, %e A344007 6, 3, 2, %e A344007 6, 4, 4, 3, %e A344007 15, 6, 5, 4, 4, %e A344007 12, 15, 6, 6, 5, 4, %e A344007 ... %o A344007 (PARI) lista(nn) = {my(row, nrow, drow); for (n=1, nn, if (n==1, row = [1], k = vecmax(row); nrow = row; nrow[n-1] = 1/n; nrow = concat(nrow, k - 1/n); row = vecsort(nrow);); drow = apply(denominator, row); for (k=1, #drow, print1(drow[k], ", ")););} \\ _Michel Marcus_, Jun 09 2021 %Y A344007 Cf. A003506. %Y A344007 For numerators see A344008. %K A344007 nonn,tabl,frac %O A344007 1,2 %A A344007 _Evan Lee_, Jun 08 2021