This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344032 #6 May 09 2021 15:34:03 %S A344032 2,11,23,53,12451,36779999 %N A344032 a(n) is the least prime that begins a sequence of at least n distinct primes under iteration of A061762. %e A344032 12451 is prime and A061762(12451) = 1*2*4*5*1+1+2+4+5+1 = 53. %e A344032 53 is prime and A061762(53) = 5*3+5+3 = 23. %e A344032 23 is prime and A061762(23) = 2*3+2+3 = 11. %e A344032 11 is prime and A061762(11) = 1*1+1+1 = 3. %e A344032 3 is prime and A061762(3) = 3+3 = 6 is not prime. %e A344032 Thus 12451 begins a sequence of 5 distinct primes under the iteration of A061762. Since 12451 is the least such prime, a(5) = 12451. %p A344032 f:= proc(n) local L; %p A344032 L:= convert(n,base,10); %p A344032 convert(L,`+`)+convert(L,`*`) %p A344032 end proc: %p A344032 g:= proc(n) local S,v; %p A344032 S:= {n}: %p A344032 v:= n; %p A344032 do %p A344032 v:= f(v); %p A344032 if member(v,S) or not isprime(v) then return nops(S) fi; %p A344032 S:= S union {v} %p A344032 od %p A344032 end proc: %p A344032 R:= NULL: p:= 1: m:= 0: %p A344032 while m < 5 do %p A344032 p:= nextprime(p); %p A344032 v:= g(p); %p A344032 if v > m then R:= R, p$(v-m); m:= v fi %p A344032 od: %p A344032 R; %Y A344032 Cf. A061762, A214629. %K A344032 nonn,base,more %O A344032 1,1 %A A344032 _J. M. Bergot_ and _Robert Israel_, May 07 2021