cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344035 Numbers that are the sum of five positive cubes in exactly four ways.

This page as a plain text file.
%I A344035 #12 Sep 15 2024 13:51:57
%S A344035 1252,1376,1461,1522,1548,1585,1590,1646,1702,1709,1737,1739,1772,
%T A344035 1798,1802,1810,1864,1889,1954,1987,2006,2033,2081,2096,2152,2160,
%U A344035 2225,2241,2251,2276,2313,2322,2339,2341,2367,2374,2377,2416,2423,2456,2458,2465,2467,2512,2521,2528,2530,2537,2540,2549,2556,2582
%N A344035 Numbers that are the sum of five positive cubes in exactly four ways.
%C A344035 Differs from A344034 at term 13 because 1765 = 1^3 + 1^3 + 2^3 + 3^3 + 12^3 = 1^3 + 1^3 + 6^3 + 6^3 + 11^3 = 1^3 + 2^3 + 3^3 + 9^3 + 10^3 = 3^3 + 4^3 + 6^3 + 9^3 + 9^3 = 4^3 + 4^3 + 5^3 + 8^3 + 10^3
%H A344035 David Consiglio, Jr., <a href="/A344035/b344035.txt">Table of n, a(n) for n = 1..20000</a>
%e A344035 1461 is a member of this sequence because 1461 = 1^3 + 1^3 + 1^3 + 9^3 + 9^3 = 1^3 + 1^3 + 4^3 + 4^3 + 11^3 = 3^3 + 3^3 + 4^3 + 7^3 + 10^3 = 6^3 + 6^3 + 7^3 + 7^3 + 7^3
%t A344035 s5pcQ[n_]:=Length[Select[PowersRepresentations[n,5,3],FreeQ[#,0]&]]==4; Select[Range[ 3000],s5pcQ] (* _Harvey P. Dale_, Sep 15 2024 *)
%o A344035 (Python)
%o A344035 from itertools import combinations_with_replacement as cwr
%o A344035 from collections import defaultdict
%o A344035 keep = defaultdict(lambda: 0)
%o A344035 power_terms = [x**3 for x in range(1,50)]
%o A344035 for pos in cwr(power_terms,5):
%o A344035     tot = sum(pos)
%o A344035     keep[tot] += 1
%o A344035 rets = sorted([k for k,v in keep.items() if v == 4])
%o A344035 for x in range(len(rets)):
%o A344035     print(rets[x])
%Y A344035 Cf. A294738, A343705, A343972, A343988, A344034, A344355, A345766.
%K A344035 nonn
%O A344035 1,1
%A A344035 _David Consiglio, Jr._, May 07 2021