This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344035 #12 Sep 15 2024 13:51:57 %S A344035 1252,1376,1461,1522,1548,1585,1590,1646,1702,1709,1737,1739,1772, %T A344035 1798,1802,1810,1864,1889,1954,1987,2006,2033,2081,2096,2152,2160, %U A344035 2225,2241,2251,2276,2313,2322,2339,2341,2367,2374,2377,2416,2423,2456,2458,2465,2467,2512,2521,2528,2530,2537,2540,2549,2556,2582 %N A344035 Numbers that are the sum of five positive cubes in exactly four ways. %C A344035 Differs from A344034 at term 13 because 1765 = 1^3 + 1^3 + 2^3 + 3^3 + 12^3 = 1^3 + 1^3 + 6^3 + 6^3 + 11^3 = 1^3 + 2^3 + 3^3 + 9^3 + 10^3 = 3^3 + 4^3 + 6^3 + 9^3 + 9^3 = 4^3 + 4^3 + 5^3 + 8^3 + 10^3 %H A344035 David Consiglio, Jr., <a href="/A344035/b344035.txt">Table of n, a(n) for n = 1..20000</a> %e A344035 1461 is a member of this sequence because 1461 = 1^3 + 1^3 + 1^3 + 9^3 + 9^3 = 1^3 + 1^3 + 4^3 + 4^3 + 11^3 = 3^3 + 3^3 + 4^3 + 7^3 + 10^3 = 6^3 + 6^3 + 7^3 + 7^3 + 7^3 %t A344035 s5pcQ[n_]:=Length[Select[PowersRepresentations[n,5,3],FreeQ[#,0]&]]==4; Select[Range[ 3000],s5pcQ] (* _Harvey P. Dale_, Sep 15 2024 *) %o A344035 (Python) %o A344035 from itertools import combinations_with_replacement as cwr %o A344035 from collections import defaultdict %o A344035 keep = defaultdict(lambda: 0) %o A344035 power_terms = [x**3 for x in range(1,50)] %o A344035 for pos in cwr(power_terms,5): %o A344035 tot = sum(pos) %o A344035 keep[tot] += 1 %o A344035 rets = sorted([k for k,v in keep.items() if v == 4]) %o A344035 for x in range(len(rets)): %o A344035 print(rets[x]) %Y A344035 Cf. A294738, A343705, A343972, A343988, A344034, A344355, A345766. %K A344035 nonn %O A344035 1,1 %A A344035 _David Consiglio, Jr._, May 07 2021