This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344048 #18 May 09 2021 08:04:25 %S A344048 1,1,2,2,7,14,6,34,86,168,24,209,648,1473,2840,120,1546,5752,14988, %T A344048 32344,61870,720,13327,58576,173007,414160,866695,1649232,5040,130922, %U A344048 671568,2228544,5876336,13373190,27422352,51988748 %N A344048 T(n, k) = n! * [x^n] exp(k * x/(1 - x))/(1 - x). Triangle read by rows, T(n, k) for 0 <= k <= n. %F A344048 T(n, k) = (-1)^n*U(-n, 1, -k), where U is the Kummer U function. %F A344048 T(n, k) = n! * L(n, -k), where L is the Laguerre polynomial function. %F A344048 T(n, k) = n! * Sum_{j=0..n} binomial(n, j) * k^j / j!. %e A344048 Triangle starts: %e A344048 [0] 1; %e A344048 [1] 1, 2; %e A344048 [2] 2, 7, 14; %e A344048 [3] 6, 34, 86, 168; %e A344048 [4] 24, 209, 648, 1473, 2840; %e A344048 [5] 120, 1546, 5752, 14988, 32344, 61870; %e A344048 [6] 720, 13327, 58576, 173007, 414160, 866695, 1649232; %e A344048 [7] 5040, 130922, 671568, 2228544, 5876336, 13373190, 27422352, 51988748; %e A344048 . %e A344048 Array whose upward read antidiagonals are the rows of the triangle. %e A344048 n\k 0 1 2 3 4 5 %e A344048 -------------------------------------------------------------------- %e A344048 [0] 1, 2, 14, 168, 2840, 61870, ... %e A344048 [1] 1, 7, 86, 1473, 32344, 866695, ... %e A344048 [2] 2, 34, 648, 14988, 414160, 13373190, ... %e A344048 [3] 6, 209, 5752, 173007, 5876336, 224995745, ... %e A344048 [4] 24, 1546, 58576, 2228544, 91356544, 4094022230, ... %e A344048 [5] 120, 13327, 671568, 31636449, 1542401920, 80031878175, ... %e A344048 [6] 720, 130922, 8546432, 490102164, 28075364096, 1671426609550, ... %p A344048 # Rows of the array: %p A344048 A := (n, k) -> (n + k)!*LaguerreL(n + k, -k): %p A344048 seq(print(seq(simplify(A(n, k)), k = 0..6)), n = 0..6); %p A344048 # Columns of the array: %p A344048 egf := n -> exp(n*x/(1-x))/(1-x): ser := n -> series(egf(n), x, 16): %p A344048 C := (k, n) -> (n + k)!*coeff(ser(k), x, n + k): %p A344048 seq(print(seq(C(k, n), n = 0..6)), k=0..6); %t A344048 T[n_, k_] := (-1)^(n) HypergeometricU[-n, 1, -k]; %t A344048 Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten %t A344048 (* Alternative: *) %t A344048 T[n_, k_] := n ! LaguerreL[n , -k]; %t A344048 Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten %o A344048 (SageMath) # Columns of the array: %o A344048 def column(k, len): %o A344048 R.<x> = PowerSeriesRing(QQ, default_prec=len+k) %o A344048 f = exp(k * x / (1 - x)) / (1 - x) %o A344048 return f.egf_to_ogf().list()[k:] %o A344048 for col in (0..6): print(column(col, 8)) %o A344048 # Alternative: %o A344048 @cached_function %o A344048 def L(n, x): %o A344048 if n == 0: return 1 %o A344048 if n == 1: return 1 - x %o A344048 return (L(n-1, x) * (2*n - 1 - x) - L(n-2, x)*(n - 1)) / n %o A344048 A344048 = lambda n, k: factorial(n)*L(n, -k) %o A344048 print(flatten([[A344048(n, k) for k in (0..n)] for n in (0..7)])) %o A344048 (PARI) %o A344048 T(n, k) = n! * sum(j=0, n, binomial(n, j) * k^j / j!) %o A344048 for(n=0, 9, for(k=0, n, print(T(n, k)))) %Y A344048 T(n, n) = A277373(n). T(2*n, n) = A344049(n). Row sums are A343849. %Y A344048 Cf. A343847. %K A344048 nonn,tabl %O A344048 0,3 %A A344048 _Peter Luschny_, May 08 2021