cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A344051 a(n) = Sum_{k=0..n} binomial(n, k)*|Lah(n, k)|. Binomial convolution of the unsigned Lah numbers A271703.

Original entry on oeis.org

1, 1, 5, 37, 361, 4301, 60001, 954325, 16984577, 333572041, 7151967181, 165971975621, 4139744524345, 110333560295557, 3126749660583641, 93819198847833061, 2969676820062708481, 98843743790129998865, 3449675368718647501717, 125921086600579132143781, 4796519722094585691925961
Offset: 0

Views

Author

Peter Luschny, May 10 2021

Keywords

Crossrefs

Programs

  • Maple
    aList := proc(len) local lah;
    lah := (n, k) -> `if`(n = k, 1, binomial(n-1, k-1)*n!/k!):
    seq(add(binomial(n, k)*lah(n, k), k = 0..n), n = 0..len-1) end:
    lprint(aList(22));
  • Mathematica
    a[n_] := n n! HypergeometricPFQ[{1 - n, 1 - n}, {2, 2}, 1]; a[0] := 1;
    Table[a[n], {n, 0, 20}]

Formula

a(n) = n * n! * hypergeom([1 - n, 1 - n], [2, 2], 1) for n >= 1.
D-finite with recurrence +16*n*a(n) +6*(-8*n^2+5*n-1)*a(n-1) +(48*n^3-266*n^2+407*n-167)*a(n-2) +(-16*n^4+106*n^3-219*n^2+108*n+93)*a(n-3) +(n-4)*(2*n^3-13*n^2+16*n+25)*a(n-4) -(n-5)*(n-4)^3*a(n-5)=0. - R. J. Mathar, Jul 27 2022
a(n) ~ n^(n - 1/2) / (sqrt(6*Pi) * exp(n - 3*n^(2/3) + n^(1/3) - 1/3)) * (1 + 31/(54*n^(1/3))). - Vaclav Kotesovec, Apr 27 2024
Showing 1-1 of 1 results.