A344054 a(n) = Sum_{k = 0..n} E1(n, k)*k^2, where E1 are the Eulerian numbers A173018.
0, 0, 1, 8, 64, 540, 4920, 48720, 524160, 6108480, 76809600, 1037836800, 15008716800, 231437606400, 3792255667200, 65819609856000, 1206547550208000, 23297526540288000, 472708591939584000, 10055994967130112000, 223826984752250880000, 5202760944485744640000, 126075414965721661440000, 3179798058882852126720000, 83346901966165164687360000, 2267221868000212451328000000
Offset: 0
Keywords
Crossrefs
Programs
-
Maple
a := n -> add(combinat[eulerian1](n, k)*k^2, k = 0..n): # Recurrence: a := proc(n) option remember; if n < 2 then 0 elif n = 2 then 1 else ((n-3)*(n-1)*(23*n-44)*a(n-2) + ((159 - 7*n)*n - 286)*a(n-1))/(16*(n - 2)) fi end: seq(a(n), n = 0..29);
-
Mathematica
a[n_] := Sum[Sum[(-1)^j Binomial[n + 1, j] k^2 (k + 1 - j)^n, {j,0,k}], {k,0,n}]; a[0] := 0; Table[a[n], {n, 0, 25}]
-
SageMath
def aList(len): R.
= PowerSeriesRing(QQ, default_prec=len+2) f = x^2*(-x^2 + x - 3)/(6*(x - 1)^3) return f.egf_to_ogf().list()[:len] print(aList(20))
Formula
a(n) = n! * [x^n] x^2*(-x^2 + x - 3)/(6*(x - 1)^3).
a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^j*binomial(n + 1, j)*k^2*(k + 1 - j)^n.
a(n) = ((n - 3)*(n - 1)*(23*n - 44)*a(n-2) + ((159 - 7*n)*n - 286)*a(n-1))/(16*(n - 2)) for n >= 3.
Comments