cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344054 a(n) = Sum_{k = 0..n} E1(n, k)*k^2, where E1 are the Eulerian numbers A173018.

Original entry on oeis.org

0, 0, 1, 8, 64, 540, 4920, 48720, 524160, 6108480, 76809600, 1037836800, 15008716800, 231437606400, 3792255667200, 65819609856000, 1206547550208000, 23297526540288000, 472708591939584000, 10055994967130112000, 223826984752250880000, 5202760944485744640000, 126075414965721661440000, 3179798058882852126720000, 83346901966165164687360000, 2267221868000212451328000000
Offset: 0

Views

Author

Peter Luschny, May 11 2021

Keywords

Comments

The Eulerian transform of the squares.

Crossrefs

Transforms of the squares: A151881 (StirlingCycle), A033452 (StirlingSet), A105219 (Laguerre), A103194 (Lah), A065096 (SchröderBig), A083411 (Fubini), A141222 (Narayana), A000330 (Units A000012).
Cf. A173018.

Programs

  • Maple
    a := n -> add(combinat[eulerian1](n, k)*k^2, k = 0..n):
    # Recurrence:
    a := proc(n) option remember; if n < 2 then 0 elif n = 2 then 1 else
    ((n-3)*(n-1)*(23*n-44)*a(n-2) + ((159 - 7*n)*n - 286)*a(n-1))/(16*(n - 2)) fi end:
    seq(a(n), n = 0..29);
  • Mathematica
    a[n_] := Sum[Sum[(-1)^j Binomial[n + 1, j] k^2 (k + 1 - j)^n, {j,0,k}], {k,0,n}]; a[0] := 0; Table[a[n], {n, 0, 25}]
  • SageMath
    def aList(len):
        R. = PowerSeriesRing(QQ, default_prec=len+2)
        f = x^2*(-x^2 + x - 3)/(6*(x - 1)^3)
        return f.egf_to_ogf().list()[:len]
    print(aList(20))

Formula

a(n) = n! * [x^n] x^2*(-x^2 + x - 3)/(6*(x - 1)^3).
a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^j*binomial(n + 1, j)*k^2*(k + 1 - j)^n.
a(n) = ((n - 3)*(n - 1)*(23*n - 44)*a(n-2) + ((159 - 7*n)*n - 286)*a(n-1))/(16*(n - 2)) for n >= 3.