This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344066 #9 May 09 2021 03:33:40 %S A344066 1,1,7,56,392,3087,21952,170471,1210104,9411920,66824632,513890832, %T A344066 3683707839,28086110472,201122377288,1534688027817,10978118077136, %U A344066 83158453503608,599161640356888,4508826988300152,32435340235930576,244366486039786096,1756858874561956865,13161303959340223232 %N A344066 Expansion of Product_{k>=1} (1 + 7^(k-1)*x^k). %F A344066 a(n) = Sum_{k=0..A003056(n)} q(n,k) * 7^(n-k), where q(n,k) is the number of partitions of n into k distinct parts. %F A344066 a(n) ~ (-polylog(2, -1/7))^(1/4) * 7^n * exp(2*sqrt(-polylog(2, -1/7)*n)) / (4*sqrt(2*Pi/7)*n^(3/4)). - _Vaclav Kotesovec_, May 09 2021 %t A344066 nmax = 23; CoefficientList[Series[Product[(1 + 7^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x] %t A344066 Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 7^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 23}] %o A344066 (PARI) seq(n)={Vec(prod(k=1, n, 1 + 7^(k-1)*x^k + O(x*x^n)))} \\ _Andrew Howroyd_, May 08 2021 %Y A344066 Cf. A003056, A008289, A304961, A338676, A340103, A344062, A344063, A344064, A344065, A344067, A344068. %K A344066 nonn %O A344066 0,3 %A A344066 _Ilya Gutkovskiy_, May 08 2021