A344072 Smallest even k such that h(-k) = 2n, where h(D) is the class number of the quadratic field with discriminant D; or 0 if no such k exists.
20, 56, 104, 164, 296, 356, 404, 584, 1172, 776, 1076, 1316, 1256, 1364, 1844, 1784, 2456, 2504, 4916, 2756, 3176, 3416, 3764, 4424, 4436, 5924, 6296, 4616, 5144, 5444, 10484, 6536, 9236, 7124, 7796, 7556, 12776, 9176, 8564, 10856, 11156, 10436, 11864, 12536, 14804, 13604, 13844, 16376, 15896, 13796
Offset: 1
Keywords
Examples
The smallest even k such that h(-k) = 2 is k = 20, so a(1) = 20. The smallest even k such that h(-k) = 4 is k = 56, so a(2) = 56. The smallest even k such that h(-k) = 12 is k = 356, so a(6) = 356.
Links
- Jianing Song, Table of n, a(n) for n = 1..250
- Eric Weisstein's World of Mathematics, Class Number.
Programs
-
PARI
a(n) = my(d=4); while(!isfundamental(-d) || qfbclassno(-d)!=2*n, d+=4); d
Comments