A344079 Numbers m such that A060649(m) > 0 and that C(-A060649(m)) is not cyclic, where C(D) is the class group of the quadratic field with discriminant D.
12, 16, 20, 72, 88, 92, 104, 128, 136, 164, 172, 184, 188, 192, 236, 243, 244, 256, 260, 264, 272, 276, 284, 292, 296, 316, 332, 336, 340, 342, 344, 348, 364, 372, 376, 388, 392, 396, 400, 416, 420, 440, 456, 468, 484, 488, 496, 504, 536, 548, 560, 576, 596, 600, 608, 612, 620, 637, 640, 644, 652, 664
Offset: 1
Keywords
Examples
The smallest k == 3 (mod 4) such that Q(sqrt(-k)) has class number 12 is k = -231, but the class group of Q(sqrt(-231)) is isomorphic to C_2 X C_6, which is not cyclic, so 12 is a term. The smallest k == 3 (mod 4) such that Q(sqrt(-k)) has class number 20 is k = -455, but the class group of Q(sqrt(-455)) is isomorphic to C_2 X C_10, which is not cyclic, so 20 is a term. The smallest k == 3 (mod 4) such that Q(sqrt(-k)) has class number 637 is k = -149519, but the class group of Q(sqrt(-149519)) is isomorphic to C_7 X C_91, which is not cyclic, so 637 is a term.
Programs
-
PARI
isA344079(n) = my(d=3); while(!isfundamental(-d) || qfbclassno(-d)!=n, d+=4); #quadclassunit(-d)[2]>1
Comments