This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344082 #20 Jan 25 2024 17:06:06 %S A344082 1,10,11,47,13,110,15,158,60,130,19,517,21,150,143,441,25,600,27,611, %T A344082 165,190,31,1738,92,210,244,705,37,1430,39,1098,209,250,195,2820,45, %U A344082 270,231,2054,49,1650,51,893,780,310,55,4851,132,920,275,987,61,2440,247,2370,297,370,67,6721,69 %N A344082 a(n) = n * Sum_{d|n} tau(d)^3 / d, where tau(n) is the number of divisors of n. %H A344082 László Tóth, <a href="http://arxiv.org/abs/1310.7053">Multiplicative arithmetic functions of several variables: a survey</a>, arXiv preprint arXiv:1310.7053 [math.NT], 2013. %F A344082 G.f.: Sum_{k >= 1} tau(k)^3 * x^k/(1 - x^k)^2. %F A344082 If p is prime, a(p) = 8 + p. %F A344082 Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(2)^4 * Product_{p prime} (1 + 4/p^2 + 1/p^4) = 31.237542262502... . - _Amiram Eldar_, Dec 22 2023 %F A344082 From _Peter Bala_, Jan 25 2024: (Start) %F A344082 a(n) = Sum_{d|n, e|n} gcd(d, e) * tau(n/d) * tau(n/e) (the sum is a multiplicative function of n - see Tóth). %F A344082 Multiplicative: a(p^k) = ( p^(k+2)*(p^2 + 4*p + 1) - p^3*(k + 2)^3 + p^2*(3*k^3 + 15*k^2 + 21*k + 5) - p*(3*k^3 + 12*k^2 + 12*k + 4) + (k + 1)^3 ) / (p - 1)^4. (End) %t A344082 a[n_] := n * DivisorSum[n, DivisorSigma[0, #]^3/# &]; Array[a, 61] (* _Amiram Eldar_, May 09 2021 *) %o A344082 (PARI) a(n) = n*sumdiv(n, d, numdiv(d)^3/d); %o A344082 (PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, numdiv(k)^3*x^k/(1-x^k)^2)) %Y A344082 Cf. A007429, A013661, A062369, A097988, A344043. %K A344082 nonn,mult,easy %O A344082 1,2 %A A344082 _Seiichi Manyama_, May 09 2021