cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344085 Triangle of squarefree numbers first grouped by greatest prime factor, then sorted by omega, then in increasing order, read by rows.

This page as a plain text file.
%I A344085 #12 Feb 26 2025 20:43:57
%S A344085 1,2,3,6,5,10,15,30,7,14,21,35,42,70,105,210,11,22,33,55,77,66,110,
%T A344085 154,165,231,385,330,462,770,1155,2310,13,26,39,65,91,143,78,130,182,
%U A344085 195,273,286,429,455,715,1001,390,546,858,910,1365,1430,2002,2145,3003,5005,2730,4290,6006,10010,15015,30030
%N A344085 Triangle of squarefree numbers first grouped by greatest prime factor, then sorted by omega, then in increasing order, read by rows.
%C A344085 Differs from A339195 in having 77 before 66.
%e A344085 Triangle begins:
%e A344085    1
%e A344085    2
%e A344085    3   6
%e A344085    5  10  15  30
%e A344085    7  14  21  35  42  70 105 210
%t A344085 nn=4;
%t A344085 GatherBy[SortBy[Select[Range[Times@@Prime/@Range[nn]],SquareFreeQ[#]&&PrimePi[FactorInteger[#][[-1,1]]]<=nn&],PrimeOmega],FactorInteger[#][[-1,1]]&]
%Y A344085 Row lengths are A000079.
%Y A344085 Grouping by greatest prime factor only gives A339195.
%Y A344085 Row sums are 1 and A339360.
%Y A344085 Cf. A001221, A005117, A005183, A014466, A019565, A187769, A209862.
%Y A344085 Partition/composition orderings: A026791, A026792, A026793, A036036, A036037, A048793, A066099, A080577, A112798, A118457, A124734, A162247, A193073, A211992, A228100, A228531, A246688, A272020, A299755, A296774, A304038, A319247, A329631, A334301, A334302, A334439, A334442, A335122, A344086, A344087, A344088, A344089.
%Y A344085 Partition/composition applications: A001793, A036043, A049085, A070939, A115623, A124736, A129129, A185974, A238966, A294648, A333483, A333484, A333485, A333486, A334433, A334434, A334435, A334436, A334437, A334438, A334440, A334441, A335123, A335124.
%K A344085 nonn,tabf
%O A344085 1,2
%A A344085 _Gus Wiseman_, May 11 2021