This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344086 #8 May 12 2021 06:43:36 %S A344086 1,2,2,1,3,3,1,4,3,2,4,1,5,3,2,1,4,2,5,1,6,4,2,1,4,3,5,2,6,1,7,4,3,1, %T A344086 5,2,1,5,3,6,2,7,1,8,4,3,2,5,3,1,5,4,6,2,1,6,3,7,2,8,1,9,4,3,2,1,5,3, %U A344086 2,5,4,1,6,3,1,6,4,7,2,1,7,3,8,2,9,1,10 %N A344086 Flattened tetrangle of strict integer partitions sorted first by sum, then lexicographically. %C A344086 The zeroth row contains only the empty partition. %C A344086 A tetrangle is a sequence of finite triangles. %H A344086 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %e A344086 Tetrangle begins: %e A344086 0: () %e A344086 1: (1) %e A344086 2: (2) %e A344086 3: (21)(3) %e A344086 4: (31)(4) %e A344086 5: (32)(41)(5) %e A344086 6: (321)(42)(51)(6) %e A344086 7: (421)(43)(52)(61)(7) %e A344086 8: (431)(521)(53)(62)(71)(8) %e A344086 9: (432)(531)(54)(621)(63)(72)(81)(9) %t A344086 lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]]; %t A344086 Table[Sort[Select[IntegerPartitions[n],UnsameQ@@#&],lexsort],{n,0,8}] %Y A344086 Positions of first appearances are A015724. %Y A344086 Triangle sums are A066189. %Y A344086 Taking revlex instead of lex gives A118457. %Y A344086 The not necessarily strict version is A193073. %Y A344086 The version for reversed partitions is A246688. %Y A344086 The Heinz numbers of these partitions grouped by sum are A246867. %Y A344086 The ordered generalization is A339351. %Y A344086 Taking colex instead of lex gives A344087. %Y A344086 A026793 gives reversed strict partitions in A-S order (sum/length/lex). %Y A344086 A319247 sorts reversed strict partitions by Heinz number. %Y A344086 A329631 sorts strict partitions by Heinz number. %Y A344086 A344090 gives strict partitions in A-S order (sum/length/lex). %Y A344086 Cf. A005117, A014466, A209862. %Y A344086 Partition/composition orderings: A026791, A026792, A036036, A036037, A048793, A066099, A080577, A112798, A124734, A162247, A211992, A228100, A228351, A228531, A272020, A299755, A296774, A304038, A334301, A334302, A334439, A334442, A335122, A344085, A344086, A344088, A344089. %Y A344086 Partition/composition applications: A001793, A005183, A036043, A049085, A070939, A115623, A124736, A129129, A185974, A238966, A294648, A333483, A333484, A333485, A333486, A334433, A334434, A334435, A334436, A334437, A334438, A334440, A334441, A335123, A335124, A339195. %K A344086 nonn,tabf %O A344086 0,2 %A A344086 _Gus Wiseman_, May 11 2021