cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344086 Flattened tetrangle of strict integer partitions sorted first by sum, then lexicographically.

This page as a plain text file.
%I A344086 #8 May 12 2021 06:43:36
%S A344086 1,2,2,1,3,3,1,4,3,2,4,1,5,3,2,1,4,2,5,1,6,4,2,1,4,3,5,2,6,1,7,4,3,1,
%T A344086 5,2,1,5,3,6,2,7,1,8,4,3,2,5,3,1,5,4,6,2,1,6,3,7,2,8,1,9,4,3,2,1,5,3,
%U A344086 2,5,4,1,6,3,1,6,4,7,2,1,7,3,8,2,9,1,10
%N A344086 Flattened tetrangle of strict integer partitions sorted first by sum, then lexicographically.
%C A344086 The zeroth row contains only the empty partition.
%C A344086 A tetrangle is a sequence of finite triangles.
%H A344086 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a>
%e A344086 Tetrangle begins:
%e A344086   0: ()
%e A344086   1: (1)
%e A344086   2: (2)
%e A344086   3: (21)(3)
%e A344086   4: (31)(4)
%e A344086   5: (32)(41)(5)
%e A344086   6: (321)(42)(51)(6)
%e A344086   7: (421)(43)(52)(61)(7)
%e A344086   8: (431)(521)(53)(62)(71)(8)
%e A344086   9: (432)(531)(54)(621)(63)(72)(81)(9)
%t A344086 lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
%t A344086 Table[Sort[Select[IntegerPartitions[n],UnsameQ@@#&],lexsort],{n,0,8}]
%Y A344086 Positions of first appearances are A015724.
%Y A344086 Triangle sums are A066189.
%Y A344086 Taking revlex instead of lex gives A118457.
%Y A344086 The not necessarily strict version is A193073.
%Y A344086 The version for reversed partitions is A246688.
%Y A344086 The Heinz numbers of these partitions grouped by sum are A246867.
%Y A344086 The ordered generalization is A339351.
%Y A344086 Taking colex instead of lex gives A344087.
%Y A344086 A026793 gives reversed strict partitions in A-S order (sum/length/lex).
%Y A344086 A319247 sorts reversed strict partitions by Heinz number.
%Y A344086 A329631 sorts strict partitions by Heinz number.
%Y A344086 A344090 gives strict partitions in A-S order (sum/length/lex).
%Y A344086 Cf. A005117, A014466, A209862.
%Y A344086 Partition/composition orderings: A026791, A026792, A036036, A036037, A048793, A066099, A080577, A112798, A124734, A162247, A211992, A228100, A228351, A228531, A272020, A299755, A296774, A304038, A334301, A334302, A334439, A334442, A335122, A344085, A344086, A344088, A344089.
%Y A344086 Partition/composition applications: A001793, A005183, A036043, A049085, A070939, A115623, A124736, A129129, A185974, A238966, A294648, A333483, A333484, A333485, A333486, A334433, A334434, A334435, A334436, A334437, A334438, A334440, A334441, A335123, A335124, A339195.
%K A344086 nonn,tabf
%O A344086 0,2
%A A344086 _Gus Wiseman_, May 11 2021