This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344087 #10 Sep 22 2023 09:02:38 %S A344087 1,2,2,1,3,3,1,4,4,1,3,2,5,3,2,1,5,1,4,2,6,4,2,1,6,1,5,2,4,3,7,5,2,1, %T A344087 4,3,1,7,1,6,2,5,3,8,6,2,1,5,3,1,8,1,4,3,2,7,2,6,3,5,4,9,4,3,2,1,7,2, %U A344087 1,6,3,1,5,4,1,9,1,5,3,2,8,2,7,3,6,4,10 %N A344087 Flattened tetrangle of strict integer partitions sorted first by sum, then colexicographically. %C A344087 The zeroth row contains only the empty partition. %C A344087 A tetrangle is a sequence of finite triangles. %H A344087 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %e A344087 Tetrangle begins: %e A344087 0: () %e A344087 1: (1) %e A344087 2: (2) %e A344087 3: (21)(3) %e A344087 4: (31)(4) %e A344087 5: (41)(32)(5) %e A344087 6: (321)(51)(42)(6) %e A344087 7: (421)(61)(52)(43)(7) %e A344087 8: (521)(431)(71)(62)(53)(8) %e A344087 9: (621)(531)(81)(432)(72)(63)(54)(9) %t A344087 colex[f_,c_]:=OrderedQ[PadRight[{Reverse[f],Reverse[c]}]]; %t A344087 Table[Sort[Select[IntegerPartitions[n],UnsameQ@@#&],colex],{n,0,10}] %Y A344087 Positions of first appearances are A015724. %Y A344087 Triangle sums are A066189. %Y A344087 Taking revlex instead of colex gives A118457. %Y A344087 The not necessarily strict version is A211992. %Y A344087 Taking lex instead of colex gives A344086. %Y A344087 A026793 gives reversed strict partitions in A-S order (sum/length/lex). %Y A344087 A319247 sorts strict partitions by Heinz number. %Y A344087 A329631 sorts reversed strict partitions by Heinz number. %Y A344087 A344090 gives strict partitions in A-S order (sum/length/lex). %Y A344087 Cf. A005117, A014466, A209862. %Y A344087 Partition/composition orderings: A026791, A026792, A036036, A036037, A048793, A066099, A080576, A080577, A112798, A124734, A162247, A193073, A211992, A228100, A228351, A228531, A246688, A272020, A299755, A296774, A304038, A319247, A334301, A334302, A334439, A334442, A335122, A339351, A344085, A344086, A344088, A344089, A344091. %Y A344087 Partition/composition applications: A001793, A005183, A036043, A049085, A070939, A115623, A124736, A129129, A185974, A238966, A246867, A294648, A333483, A333484, A333485, A333486, A334433, A334434, A334435, A334436, A334437, A334438, A334440, A334441, A335123, A335124, A339195. %K A344087 nonn,tabf %O A344087 0,2 %A A344087 _Gus Wiseman_, May 11 2021