cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344088 Flattened tetrangle of reversed strict integer partitions sorted first by sum, then colexicographically.

This page as a plain text file.
%I A344088 #10 Sep 22 2023 09:01:40
%S A344088 1,2,1,2,3,1,3,4,2,3,1,4,5,1,2,3,2,4,1,5,6,1,2,4,3,4,2,5,1,6,7,1,3,4,
%T A344088 1,2,5,3,5,2,6,1,7,8,2,3,4,1,3,5,4,5,1,2,6,3,6,2,7,1,8,9,1,2,3,4,2,3,
%U A344088 5,1,4,5,1,3,6,4,6,1,2,7,3,7,2,8,1,9,10
%N A344088 Flattened tetrangle of reversed strict integer partitions sorted first by sum, then colexicographically.
%C A344088 The zeroth row contains only the empty partition.
%C A344088 A tetrangle is a sequence of finite triangles.
%H A344088 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a>
%e A344088 Tetrangle begins:
%e A344088   0: ()
%e A344088   1: (1)
%e A344088   2: (2)
%e A344088   3: (12)(3)
%e A344088   4: (13)(4)
%e A344088   5: (23)(14)(5)
%e A344088   6: (123)(24)(15)(6)
%e A344088   7: (124)(34)(25)(16)(7)
%e A344088   8: (134)(125)(35)(26)(17)(8)
%e A344088   9: (234)(135)(45)(126)(36)(27)(18)(9)
%t A344088 colex[f_,c_]:=OrderedQ[PadRight[{Reverse[f],Reverse[c]}]];
%t A344088 Table[Sort[Reverse/@Select[IntegerPartitions[n],UnsameQ@@#&],colex],{n,0,10}]
%Y A344088 Positions of first appearances are A015724.
%Y A344088 Triangle sums are A066189.
%Y A344088 The non-strict version is A080576.
%Y A344088 Taking lex instead of colex gives A246688 (non-reversed: A344086).
%Y A344088 The non-reversed version is A344087.
%Y A344088 Taking revlex instead of colex gives A344089 (non-reversed: A118457).
%Y A344088 A026793 gives reversed strict partitions in A-S order (sum/length/lex).
%Y A344088 A319247 sorts strict partitions by Heinz number.
%Y A344088 A329631 sorts reversed strict partitions by Heinz number.
%Y A344088 A344090 gives strict partitions in A-S order (sum/length/lex).
%Y A344088 Cf. A005117, A014466, A209862.
%Y A344088 Partition/composition orderings: A026791, A026792, A036036, A036037, A048793, A066099, A080577, A112798, A124734, A162247, A193073, A211992, A228100, A228351, A228531, A272020, A299755, A296774, A304038, A334301, A334302, A334439, A334442, A335122, A339351, A344085, A344086, A344091.
%Y A344088 Partition/composition applications: A001793, A005183, A036043, A049085, A070939, A115623, A124736, A129129, A185974, A238966, A246867, A294648, A333483, A333484, A333485, A333486, A334433, A334434, A334435, A334436, A334437, A334438, A334440, A334441, A335123, A335124, A339195.
%K A344088 nonn,tabf
%O A344088 0,2
%A A344088 _Gus Wiseman_, May 12 2021