This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344088 #10 Sep 22 2023 09:01:40 %S A344088 1,2,1,2,3,1,3,4,2,3,1,4,5,1,2,3,2,4,1,5,6,1,2,4,3,4,2,5,1,6,7,1,3,4, %T A344088 1,2,5,3,5,2,6,1,7,8,2,3,4,1,3,5,4,5,1,2,6,3,6,2,7,1,8,9,1,2,3,4,2,3, %U A344088 5,1,4,5,1,3,6,4,6,1,2,7,3,7,2,8,1,9,10 %N A344088 Flattened tetrangle of reversed strict integer partitions sorted first by sum, then colexicographically. %C A344088 The zeroth row contains only the empty partition. %C A344088 A tetrangle is a sequence of finite triangles. %H A344088 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %e A344088 Tetrangle begins: %e A344088 0: () %e A344088 1: (1) %e A344088 2: (2) %e A344088 3: (12)(3) %e A344088 4: (13)(4) %e A344088 5: (23)(14)(5) %e A344088 6: (123)(24)(15)(6) %e A344088 7: (124)(34)(25)(16)(7) %e A344088 8: (134)(125)(35)(26)(17)(8) %e A344088 9: (234)(135)(45)(126)(36)(27)(18)(9) %t A344088 colex[f_,c_]:=OrderedQ[PadRight[{Reverse[f],Reverse[c]}]]; %t A344088 Table[Sort[Reverse/@Select[IntegerPartitions[n],UnsameQ@@#&],colex],{n,0,10}] %Y A344088 Positions of first appearances are A015724. %Y A344088 Triangle sums are A066189. %Y A344088 The non-strict version is A080576. %Y A344088 Taking lex instead of colex gives A246688 (non-reversed: A344086). %Y A344088 The non-reversed version is A344087. %Y A344088 Taking revlex instead of colex gives A344089 (non-reversed: A118457). %Y A344088 A026793 gives reversed strict partitions in A-S order (sum/length/lex). %Y A344088 A319247 sorts strict partitions by Heinz number. %Y A344088 A329631 sorts reversed strict partitions by Heinz number. %Y A344088 A344090 gives strict partitions in A-S order (sum/length/lex). %Y A344088 Cf. A005117, A014466, A209862. %Y A344088 Partition/composition orderings: A026791, A026792, A036036, A036037, A048793, A066099, A080577, A112798, A124734, A162247, A193073, A211992, A228100, A228351, A228531, A272020, A299755, A296774, A304038, A334301, A334302, A334439, A334442, A335122, A339351, A344085, A344086, A344091. %Y A344088 Partition/composition applications: A001793, A005183, A036043, A049085, A070939, A115623, A124736, A129129, A185974, A238966, A246867, A294648, A333483, A333484, A333485, A333486, A334433, A334434, A334435, A334436, A334437, A334438, A334440, A334441, A335123, A335124, A339195. %K A344088 nonn,tabf %O A344088 0,2 %A A344088 _Gus Wiseman_, May 12 2021