cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344089 Flattened tetrangle of reversed strict integer partitions, sorted first by length and then colexicographically.

This page as a plain text file.
%I A344089 #5 May 12 2021 06:43:57
%S A344089 1,2,3,1,2,4,1,3,5,2,3,1,4,6,2,4,1,5,1,2,3,7,3,4,2,5,1,6,1,2,4,8,3,5,
%T A344089 2,6,1,7,1,3,4,1,2,5,9,4,5,3,6,2,7,1,8,2,3,4,1,3,5,1,2,6,10,4,6,3,7,2,
%U A344089 8,1,9,2,3,5,1,4,5,1,3,6,1,2,7,1,2,3,4
%N A344089 Flattened tetrangle of reversed strict integer partitions, sorted first by length and then colexicographically.
%C A344089 First differs from the revlex (instead of colex) version for partitions of 12.
%C A344089 The zeroth row contains only the empty partition.
%C A344089 A tetrangle is a sequence of finite triangles.
%H A344089 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order"> Lexicographic and colexicographic order</a>
%e A344089 Tetrangle begins:
%e A344089   0: ()
%e A344089   1: (1)
%e A344089   2: (2)
%e A344089   3: (3)(12)
%e A344089   4: (4)(13)
%e A344089   5: (5)(23)(14)
%e A344089   6: (6)(24)(15)(123)
%e A344089   7: (7)(34)(25)(16)(124)
%e A344089   8: (8)(35)(26)(17)(134)(125)
%e A344089   9: (9)(45)(36)(27)(18)(234)(135)(126)
%t A344089 Table[Reverse/@Sort[Select[IntegerPartitions[n],UnsameQ@@#&]],{n,0,30}]
%Y A344089 Positions of first appearances are A015724 plus one.
%Y A344089 Taking lex instead of colex gives A026793 (non-reversed: A118457).
%Y A344089 Triangle sums are A066189.
%Y A344089 Reversing all partitions gives A344090.
%Y A344089 The non-strict version is A344091.
%Y A344089 A319247 sorts strict partitions by Heinz number.
%Y A344089 A329631 sorts reversed strict partitions by Heinz number.
%Y A344089 Cf. A005117, A014466, A209862, A325683, A325859.
%Y A344089 Partition/composition orderings: A026791, A026792, A036036, A036037, A048793, A066099, A080577, A112798, A124734, A162247, A193073, A211992, A228100, A228351, A228531, A246688, A272020, A299755, A296774, A304038, A334301, A334302, A334439, A334442, A335122, A339351, A344085, A344086, A344087, A344088, A344089.
%Y A344089 Partition/composition applications: A001793, A005183, A036043, A049085, A070939, A115623, A124736, A129129, A185974, A238966, A246867, A294648, A333483, A333484, A333485, A333486, A334433, A334434, A334435, A334436, A334437, A334438, A334440, A334441, A335123, A335124, A339195.
%K A344089 nonn,tabf
%O A344089 0,2
%A A344089 _Gus Wiseman_, May 12 2021