This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344090 #9 Sep 22 2023 09:12:05 %S A344090 1,2,3,2,1,4,3,1,5,3,2,4,1,6,4,2,5,1,3,2,1,7,4,3,5,2,6,1,4,2,1,8,5,3, %T A344090 6,2,7,1,4,3,1,5,2,1,9,5,4,6,3,7,2,8,1,4,3,2,5,3,1,6,2,1,10,6,4,7,3,8, %U A344090 2,9,1,5,3,2,5,4,1,6,3,1,7,2,1,4,3,2,1 %N A344090 Flattened tetrangle of strict integer partitions, sorted first by sum, then by length, then lexicographically. %C A344090 The zeroth row contains only the empty partition. %C A344090 A tetrangle is a sequence of finite triangles. %H A344090 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %e A344090 Tetrangle begins: %e A344090 0: () %e A344090 1: (1) %e A344090 2: (2) %e A344090 3: (3)(21) %e A344090 4: (4)(31) %e A344090 5: (5)(32)(41) %e A344090 6: (6)(42)(51)(321) %e A344090 7: (7)(43)(52)(61)(421) %e A344090 8: (8)(53)(62)(71)(431)(521) %e A344090 9: (9)(54)(63)(72)(81)(432)(531)(621) %t A344090 Table[Sort[Select[IntegerPartitions[n],UnsameQ@@#&]],{n,0,10}] %Y A344090 Starting with reversed partitions gives A026793. %Y A344090 The version for compositions is A124734. %Y A344090 Showing partitions as Heinz numbers gives A246867. %Y A344090 The non-strict version is A334301 (reversed: A036036). %Y A344090 Ignoring length gives A344086 (reversed: A246688). %Y A344090 Same as A344089 with partitions reversed. %Y A344090 The version for revlex instead of lex is A344092. %Y A344090 A026791 reads off lexicographically ordered reversed partitions. %Y A344090 A080577 reads off reverse-lexicographically ordered partitions. %Y A344090 A112798 reads off reversed partitions by Heinz number. %Y A344090 A296150 reads off partitions by Heinz number. %Y A344090 Cf. A036037, A036043, A103921, A185974, A193073, A211992, A296774, A334302, A334433, A334435, A334438, A334439, A334440, A334441, A334442, A344091. %K A344090 nonn,tabf %O A344090 0,2 %A A344090 _Gus Wiseman_, May 12 2021