This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344092 #12 Sep 22 2023 09:05:21 %S A344092 1,2,3,2,1,4,3,1,5,4,1,3,2,6,5,1,4,2,3,2,1,7,6,1,5,2,4,3,4,2,1,8,7,1, %T A344092 6,2,5,3,5,2,1,4,3,1,9,8,1,7,2,6,3,5,4,6,2,1,5,3,1,4,3,2,10,9,1,8,2,7, %U A344092 3,6,4,7,2,1,6,3,1,5,4,1,5,3,2,4,3,2,1 %N A344092 Flattened tetrangle of strict integer partitions, sorted first by sum, then by length, and finally reverse-lexicographically. %C A344092 First differs from A118457 at a(53) = 4, A118457(53) = 2. %C A344092 The zeroth row contains only the empty partition. %C A344092 A tetrangle is a sequence of finite triangles. %H A344092 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %e A344092 Tetrangle begins: %e A344092 0: () %e A344092 1: (1) %e A344092 2: (2) %e A344092 3: (3)(21) %e A344092 4: (4)(31) %e A344092 5: (5)(41)(32) %e A344092 6: (6)(51)(42)(321) %e A344092 7: (7)(61)(52)(43)(421) %e A344092 8: (8)(71)(62)(53)(521)(431) %e A344092 9: (9)(81)(72)(63)(54)(621)(531)(432) %t A344092 revlensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]<Length[c],OrderedQ[{c,f}]]; %t A344092 Table[Sort[Select[IntegerPartitions[n],UnsameQ@@#&],revlensort],{n,0,10}] %Y A344092 Same as A026793 with rows reversed. %Y A344092 Ignoring length gives A118457. %Y A344092 The non-strict version is A334439 (reversed: A036036/A334302). %Y A344092 The version for lex instead of revlex is A344090. %Y A344092 A026791 reads off lexicographically ordered reversed partitions. %Y A344092 A080577 reads off reverse-lexicographically ordered partitions. %Y A344092 A112798 reads off reversed partitions by Heinz number. %Y A344092 A193073 reads off lexicographically ordered partitions. %Y A344092 A296150 reads off partitions by Heinz number. %Y A344092 Cf. A036037, A036043, A103921, A124734, A185974, A211992, A296774, A334301, A334433, A334435, A334438, A334441. %K A344092 nonn,tabf %O A344092 0,2 %A A344092 _Gus Wiseman_, May 14 2021