cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344097 Expansion of Product_{k>=1} (1 + x^k)^binomial(k+4,4).

This page as a plain text file.
%I A344097 #5 May 09 2021 11:16:47
%S A344097 1,5,25,120,505,2027,7740,28345,100355,344815,1154130,3773955,
%T A344097 12085125,37971645,117258755,356386016,1067364240,3153415695,
%U A344097 9198749905,26516197720,75586609016,213212467695,595482274750,1647568369230,4517987288720,12284672226583,33133931688645
%N A344097 Expansion of Product_{k>=1} (1 + x^k)^binomial(k+4,4).
%F A344097 a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d+1) * A174002(d) ) * a(n-k).
%t A344097 nmax = 26; CoefficientList[Series[Product[(1 + x^k)^Binomial[k + 4, 4], {k, 1, nmax}], {x, 0, nmax}], x]
%t A344097 a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d Binomial[d + 4, 4], {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 26}]
%Y A344097 Cf. A000332, A174002, A219555, A255052, A338645, A343200, A344098.
%K A344097 nonn
%O A344097 0,2
%A A344097 _Ilya Gutkovskiy_, May 09 2021