cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344098 a(n) = [x^n] Product_{k>=1} (1 + x^k)^binomial(k+n-1,n-1).

This page as a plain text file.
%I A344098 #5 May 09 2021 11:16:54
%S A344098 1,1,4,29,221,2027,21022,242209,3060262,41936745,618154670,9735013136,
%T A344098 162892047930,2882449728121,53727527279464,1051276401060921,
%U A344098 21529017626095851,460231878244308738,10246160509840187387,237067632496414877363,5689786581042000827057,141415234722601777758232
%N A344098 a(n) = [x^n] Product_{k>=1} (1 + x^k)^binomial(k+n-1,n-1).
%t A344098 Table[SeriesCoefficient[Product[(1 + x^k)^Binomial[k + n - 1, n - 1], {k, 1, n}], {x, 0, n}], {n, 0, 21}]
%t A344098 A[n_, k_] := A[n, k] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(j/d + 1) d Binomial[d + k - 1, k - 1], {d, Divisors[j]}] A[n - j, k], {j, 1, n}]]; a[n_] := A[n, n]; Table[a[n], {n, 0, 21}]
%Y A344098 Cf. A075197, A209668, A219555, A305206, A338645, A343200, A344097.
%K A344098 nonn
%O A344098 0,3
%A A344098 _Ilya Gutkovskiy_, May 09 2021