cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344101 Expansion of Product_{k>=1} (1 + x^k)^binomial(k+5,6).

This page as a plain text file.
%I A344101 #4 May 09 2021 11:17:16
%S A344101 1,1,7,35,133,511,1869,6797,24095,83938,286734,964348,3196984,
%T A344101 10460310,33813984,108076908,341821250,1070484009,3321584021,
%U A344101 10217036263,31169524988,94351439060,283498600776,845848778722,2506779443603,7381617323598,21603241378334,62853440151768
%N A344101 Expansion of Product_{k>=1} (1 + x^k)^binomial(k+5,6).
%F A344101 G.f.: exp( Sum_{k>=1} (-1)^(k+1) * x^k / (k*(1 - x^k)^7) ).
%t A344101 nmax = 27; CoefficientList[Series[Product[(1 + x^k)^Binomial[k + 5, 6], {k, 1, nmax}], {x, 0, nmax}], x]
%t A344101 a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d Binomial[d + 5, 6], {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 27}]
%Y A344101 Cf. A000428, A000579, A028377, A258343, A305206, A344099, A344100.
%K A344101 nonn
%O A344101 0,3
%A A344101 _Ilya Gutkovskiy_, May 09 2021