This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344103 #9 Sep 08 2022 08:46:26 %S A344103 1,10,6,30,132,546,270,120,840,672,1560,3960,4320,6048,9120,16380, %T A344103 26208,12180,36540,37380,10920,55692,34440,68040,112140,51480,63840, %U A344103 103320,30240,219960,273000,209160,332640,191520,1136520,393120,594720,1389960,1239840 %N A344103 a(n) is the smallest number k >= 1 with exactly n divisors d, for which sigma(k) is divisible by d*sigma(d). %e A344103 sigma(1) = 1 = 1*sigma(1). %e A344103 sigma(10) = 18 = 18*(1*sigma(1)) = 3*(2*sigma(2)). %e A344103 sigma(6) = 12 = 12*(1*sigma(1)) = 2*(2*sigma(2)) = 1*(3*sigma(3)). %e A344103 sigma(30) = 72 = 72*(1*sigma(1)) = 11*(2*sigma(2)) = 6*(3*sigma(3)) = 1*(6*sigma(6)) . %t A344103 a[n_] := Module[{k = 1}, While[Count[Divisors[k], _?(Divisible[DivisorSigma[1, k], # * DivisorSigma[1, #]] &)] != n, k++]; k]; Array[a, 25] (* _Amiram Eldar_, May 12 2021 *) %o A344103 (Magma) sd:=func<n,d| DivisorSigma(1,n) mod (d*DivisorSigma(1,d)) eq 0>; a:=[]; for n in [1..32] do k:=1; while #[d:d in Divisors(k)|sd(k,d)] ne n do k:=k+1; end while; Append(~a,k); end for; a; %o A344103 (PARI) isok(k, n) = my(sk=sigma(k)); sumdiv(k, d, (sk % (d*sigma(d))) == 0) == n; %o A344103 a(n) = my(k=1); while (!isok(k, n), k++); k; \\ _Michel Marcus_, May 12 2021 %Y A344103 Cf. A000203, A339472, A344102. %K A344103 nonn %O A344103 1,2 %A A344103 _Marius A. Burtea_, May 10 2021