A344104 a(0) = 10; for n > 0, a(n) is a(n-1) multiplied by the number of 0's so far in the sequence.
10, 10, 20, 60, 240, 1200, 8400, 75600, 831600, 10810800, 183783600, 3491888400, 73329656400, 1686582097200, 43851134527200, 1227831766761600, 36834953002848000, 1289223355099680000, 51568934203987200000, 2372170973383411200000, 123352890615937382400000
Offset: 0
Examples
To calculate a(5), multiply a(4)=240 by the number of 0's present in itself and previous terms, of which there are 5, thus yielding 1200. a(6) is 1200 multiplied by 7, which is the number of 0's present so far, thus giving 8400.
Programs
-
Mathematica
a[0]=10;a[n_]:=a[n]=a[n-1]Count[Flatten[IntegerDigits/@Array[a,n,0]],0];Array[a,20,0] (* Giorgos Kalogeropoulos, May 09 2021 *)
-
Python
A344104_list, c = [10], 1 for _ in range(20): A344104_list.append(A344104_list[-1]*c) c += str(A344104_list[-1]).count('0') # Chai Wah Wu, Jun 06 2021
Formula
a(n+1) = a(n)*#_0[a(n)...a(0)], where #_0(n) is the number of 0's in n.
Comments