A344125 Decimal expansion of Sum_{i > 0} 1/A001481(i)^4.
1, 0, 6, 8, 5, 9, 2, 1, 0, 5, 6, 5, 4, 9, 9, 0, 1, 3, 5, 2, 0, 2, 9, 4, 8, 0, 2, 0, 7, 4, 3, 2, 4, 3, 6, 1, 3, 6, 1, 3, 3, 3, 5, 9, 0, 8, 1, 0, 1, 7
Offset: 1
Examples
1.0685921056549901352029480207432436136133359081017...
Links
- R. J. Mathar, Table of Dirichlet L-series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015.
Formula
Equals Sum_{i > 0} 1/A001481(i)^4.
Equals Product_{i > 0} 1/(1-A055025(i)^-4).
Equals 1/(1-prime(1)^(-4)) * Product_{i>1 and prime(i) == 1 (mod 4)} 1/(1-prime(i)^(-4)) * Product_{i>1 and prime(i) == 3 (mod 4)} 1/(1-prime(i)^(-8)), where prime(n) = A000040(n).
Equals zeta_{2,0} (4) * zeta_{4,1} (4) * zeta_{4,3} (8), where zeta_{2,0} (s) = 2^s/(2^s - 1).
Comments