cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344134 a(n) = Sum_{i|n, j|n, k|n} lcm(i,j,k).

This page as a plain text file.
%I A344134 #18 May 12 2021 10:15:43
%S A344134 1,15,22,91,36,330,50,387,193,540,78,2002,92,750,792,1363,120,2895,
%T A344134 134,3276,1100,1170,162,8514,511,1380,1192,4550,204,11880,218,4275,
%U A344134 1716,1800,1800,17563,260,2010,2024,13932,288,16500,302,7098,6948,2430,330,29986,981,7665,2640,8372,372,17880
%N A344134 a(n) = Sum_{i|n, j|n, k|n} lcm(i,j,k).
%F A344134 a(n) = Sum_{i|n, j|n, k|n} n/gcd(i,j,k).
%F A344134 If p is prime, a(p) = 1 + 7*p.
%t A344134 a[n_]:= Sum[n/GCD[i,j,k], {i, (d = Divisors[n])}, {j, d}, {k, d}]; Array[a, 50] (* _Amiram Eldar_, May 10 2021 *)
%o A344134 (PARI) a(n) = sumdiv(n, i, sumdiv(n, j, sumdiv(n, k, lcm([i, j, k]))));
%o A344134 (PARI) a(n) = sumdiv(n, i, sumdiv(n, j, sumdiv(n, k, n/gcd([i, j, k]))));
%Y A344134 Cf. A064950, A344132, A344133, A344135.
%K A344134 nonn,mult
%O A344134 1,2
%A A344134 _Seiichi Manyama_, May 10 2021