This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344138 #23 May 12 2021 10:17:02 %S A344138 1,17,18,99,20,306,22,373,119,340,26,1782,28,374,360,1115,32,2023,34, %T A344138 1980,396,442,38,6714,165,476,532,2178,44,6120,46,2901,468,544,440, %U A344138 11781,52,578,504,7460,56,6732,58,2574,2380,646,62,20070,219,2805,576,2772,68,9044,520,8206,612,748,74,35640,76 %N A344138 a(n) = Sum_{x_1|n, x_2|n, x_3|n, x_4|n} gcd(x_1,x_2,x_3,x_4). %H A344138 Seiichi Manyama, <a href="/A344138/b344138.txt">Table of n, a(n) for n = 1..10000</a> %F A344138 a(n) = Sum_{x_1|n, x_2|n, x_3|n, x_4|n} n/lcm(x_1,x_2,x_3,x_4). %F A344138 a(n) = Sum_{d|n} phi(n/d) * tau(d)^4. %F A344138 If p is prime, a(p) = 15 + p. %F A344138 a(n) = Sum_{k=1..n} tau(gcd(k,n))^4. %t A344138 a[n_] := DivisorSum[n, EulerPhi[n/#] * DivisorSigma[0, #]^4 &]; Array[a, 50] (* _Amiram Eldar_, May 10 2021 *) %o A344138 (PARI) a(n) = sumdiv(n, i, sumdiv(n, j, sumdiv(n, k, sumdiv(n, l, gcd([i, j, k, l]))))); %o A344138 (PARI) a(n) = sumdiv(n, i, sumdiv(n, j, sumdiv(n, k, sumdiv(n, l, n/lcm([i, j, k, l]))))); %o A344138 (PARI) a(n) = sumdiv(n, d, eulerphi(n/d)*numdiv(d)^4); %o A344138 (PARI) a(n) = sum(k=1, n, numdiv(gcd(k, n))^4); %Y A344138 Cf. A344132, A344139, A344140. %K A344138 nonn,mult %O A344138 1,2 %A A344138 _Seiichi Manyama_, May 10 2021