This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344190 #10 Jul 31 2021 22:02:46 %S A344190 5,20,35,50,65,80,85,100,115,130,145,165,180,195,210,245,290,305,320, %T A344190 325,355,370,385,405,420,435,450,500,530,545,560,580,595,610,625,629, %U A344190 644,659,674,675,689,690,709,724,739,754,755,770,785,789,800,804,819,850,865,869,899,914,929,930,949,964,979,994,1025,1040 %N A344190 Numbers that are the sum of five fourth powers in exactly one way. %C A344190 Differs from A003339 at term 17 because 260 = 1^4 + 1^4 + 1^4 + 1^4 + 4^4 = 1^4 + 2^4 + 3^4 + 3^4 + 3^4 %H A344190 David Consiglio, Jr., <a href="/A344190/b344190.txt">Table of n, a(n) for n = 1..20000</a> %e A344190 35 is a member of this sequence because 35 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 %o A344190 (Python) %o A344190 from itertools import combinations_with_replacement as cwr %o A344190 from collections import defaultdict %o A344190 keep = defaultdict(lambda: 0) %o A344190 power_terms = [x**4 for x in range(1,50)] %o A344190 for pos in cwr(power_terms,5): %o A344190 tot = sum(pos) %o A344190 keep[tot] += 1 %o A344190 rets = sorted([k for k,v in keep.items() if v == 1]) %o A344190 for x in range(len(rets)): %o A344190 print(rets[x]) %Y A344190 Cf. A003339, A048926, A344189, A344237, A344643, A345813. %K A344190 nonn %O A344190 1,1 %A A344190 _David Consiglio, Jr._, May 11 2021