cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344192 Numbers that are the sum of three fourth powers in exactly two ways.

This page as a plain text file.
%I A344192 #10 Jul 31 2021 22:17:10
%S A344192 2673,6578,16562,28593,35378,42768,43218,54977,94178,105248,106353,
%T A344192 122018,134162,137633,149058,171138,177042,178737,181202,195122,
%U A344192 195858,198497,216513,234273,235298,235553,264113,264992,300833,318402,318882,324818,334802,346673,364658,384833,439922,457488
%N A344192 Numbers that are the sum of three fourth powers in exactly two ways.
%C A344192 Differs from A309762 at term 59 because 811538 = 4^4 + 23^4 + 27^4 = 7^4 + 21^4 + 28^4 = 12^4 + 17^4 + 29^4
%H A344192 David Consiglio, Jr., <a href="/A344192/b344192.txt">Table of n, a(n) for n = 1..10000</a>
%e A344192 16562 is a member of this sequence because 16562 = 1^4 + 9^4 + 10^4 = 5^4 + 6^4 + 11^4
%o A344192 (Python)
%o A344192 from itertools import combinations_with_replacement as cwr
%o A344192 from collections import defaultdict
%o A344192 keep = defaultdict(lambda: 0)
%o A344192 power_terms = [x**4 for x in range(1,50)]
%o A344192 for pos in cwr(power_terms,3):
%o A344192     tot = sum(pos)
%o A344192     keep[tot] += 1
%o A344192 rets = sorted([k for k,v in keep.items() if v == 2])
%o A344192 for x in range(len(rets)):
%o A344192     print(rets[x])
%Y A344192 Cf. A025396, A309762, A344188, A344193, A344240.
%K A344192 nonn
%O A344192 1,1
%A A344192 _David Consiglio, Jr._, May 11 2021