This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344193 #11 Jul 23 2025 16:02:58 %S A344193 259,2674,2689,2754,2929,3298,3969,4144,4209,5074,6579,6594,6659,6769, %T A344193 6834,7203,7874,8194,8979,9154,9234,10113,10674,11298,12673,12913, %U A344193 13139,14674,14689,14754,16563,16643,16818,17187,17234,17299,17314,17858,18963,19699,20658,20739,20979,21154,21219,21329,21363 %N A344193 Numbers that are the sum of four fourth powers in exactly two ways. %C A344193 Differs from A309763 at term 32 because 16578 = 1^4 + 2^4 + 9^4 + 10^4 = 2^4 + 5^4 + 6^4 + 11^4 = 3^4 + 7^4 + 8^4 + 10^4 %H A344193 David Consiglio, Jr., <a href="/A344193/b344193.txt">Table of n, a(n) for n = 1..20000</a> %e A344193 2689 is a member of this sequence because 2689 = 2^4 + 2^4 + 4^4 + 7^4 = 2^4 + 3^4 + 6^4 + 6^4 %o A344193 (Python) %o A344193 from itertools import combinations_with_replacement as cwr %o A344193 from collections import defaultdict %o A344193 keep = defaultdict(lambda: 0) %o A344193 power_terms = [x**4 for x in range(1,50)] %o A344193 for pos in cwr(power_terms,4): %o A344193 tot = sum(pos) %o A344193 keep[tot] += 1 %o A344193 rets = sorted([k for k,v in keep.items() if v == 2]) %o A344193 for x in range(len(rets)): %o A344193 print(rets[x]) %Y A344193 Cf. A025404, A309763, A344189, A344192, A344237, A344242, A344645. %K A344193 nonn %O A344193 1,1 %A A344193 _David Consiglio, Jr._, May 11 2021