cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344193 Numbers that are the sum of four fourth powers in exactly two ways.

This page as a plain text file.
%I A344193 #11 Jul 23 2025 16:02:58
%S A344193 259,2674,2689,2754,2929,3298,3969,4144,4209,5074,6579,6594,6659,6769,
%T A344193 6834,7203,7874,8194,8979,9154,9234,10113,10674,11298,12673,12913,
%U A344193 13139,14674,14689,14754,16563,16643,16818,17187,17234,17299,17314,17858,18963,19699,20658,20739,20979,21154,21219,21329,21363
%N A344193 Numbers that are the sum of four fourth powers in exactly two ways.
%C A344193 Differs from A309763 at term 32 because 16578 = 1^4 + 2^4 + 9^4 + 10^4 = 2^4 + 5^4 + 6^4 + 11^4 = 3^4 + 7^4 + 8^4 + 10^4
%H A344193 David Consiglio, Jr., <a href="/A344193/b344193.txt">Table of n, a(n) for n = 1..20000</a>
%e A344193 2689 is a member of this sequence because 2689 = 2^4 + 2^4 + 4^4 + 7^4 = 2^4 + 3^4 + 6^4 + 6^4
%o A344193 (Python)
%o A344193 from itertools import combinations_with_replacement as cwr
%o A344193 from collections import defaultdict
%o A344193 keep = defaultdict(lambda: 0)
%o A344193 power_terms = [x**4 for x in range(1,50)]
%o A344193 for pos in cwr(power_terms,4):
%o A344193     tot = sum(pos)
%o A344193     keep[tot] += 1
%o A344193 rets = sorted([k for k,v in keep.items() if v == 2])
%o A344193 for x in range(len(rets)):
%o A344193     print(rets[x])
%Y A344193 Cf. A025404, A309763, A344189, A344192, A344237, A344242, A344645.
%K A344193 nonn
%O A344193 1,1
%A A344193 _David Consiglio, Jr._, May 11 2021