cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344224 a(n) = Sum_{k=1..n} tau(gcd(k,n)^gcd(k,n)), where tau(n) is the number of divisors of n.

This page as a plain text file.
%I A344224 #15 May 17 2021 08:12:16
%S A344224 1,4,6,14,10,61,14,44,33,143,22,410,26,257,292,128,34,852,38,1050,536,
%T A344224 581,46,2352,95,791,162,1978,58,30545,62,352,1240,1307,1388,6918,74,
%U A344224 1613,1700,6264,82,80823,86,4698,4866,2321,94,12416,189,5790,2836,6490,106,10881,3284,12032,3512,3623
%N A344224 a(n) = Sum_{k=1..n} tau(gcd(k,n)^gcd(k,n)), where tau(n) is the number of divisors of n.
%H A344224 Seiichi Manyama, <a href="/A344224/b344224.txt">Table of n, a(n) for n = 1..10000</a>
%F A344224 a(n) = Sum_{d|n} phi(n/d) * tau(d^d).
%F A344224 If p is prime, a(p) = 2*p.
%t A344224 Table[Sum[DivisorSigma[0,GCD[k,n]^(GCD[k,n])],{k,n}],{n,100}] (* _Giorgos Kalogeropoulos_, May 13 2021 *)
%o A344224 (PARI) a(n) = sum(k=1, n, numdiv(gcd(k, n)^gcd(k,n)));
%o A344224 (PARI) a(n) = sumdiv(n, d, eulerphi(n/d)*numdiv(d^d));
%Y A344224 Cf. A344221, A344222, A344223, A344225.
%K A344224 nonn
%O A344224 1,2
%A A344224 _Seiichi Manyama_, May 12 2021