cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344225 a(n) = Sum_{k=1..n} tau(gcd(k,n)^(n/gcd(k,n))), where tau(n) is the number of divisors of n.

This page as a plain text file.
%I A344225 #16 May 17 2021 08:12:18
%S A344225 1,3,4,8,6,17,8,23,17,35,12,57,14,61,44,74,18,123,20,121,72,137,24,
%T A344225 215,47,187,96,217,30,387,32,261,152,311,100,488,38,385,204,441,42,
%U A344225 813,44,505,294,557,48,961,93,739,332,697,54,1333,188,787,408,875,60,1723,62,997,488,976,244,2433,68
%N A344225 a(n) = Sum_{k=1..n} tau(gcd(k,n)^(n/gcd(k,n))), where tau(n) is the number of divisors of n.
%H A344225 Seiichi Manyama, <a href="/A344225/b344225.txt">Table of n, a(n) for n = 1..10000</a>
%F A344225 a(n) = Sum_{d|n} phi(n/d) * tau(d^(n/d)).
%F A344225 If p is prime, a(p) = 1 + p.
%t A344225 Table[Sum[DivisorSigma[0,GCD[k,n]^(n/GCD[k,n])],{k,n}],{n,100}] (* _Giorgos Kalogeropoulos_, May 13 2021 *)
%o A344225 (PARI) a(n) = sum(k=1, n, numdiv(gcd(k, n)^(n/gcd(k, n))));
%o A344225 (PARI) a(n) = sumdiv(n, d, eulerphi(n/d)*numdiv(d^(n/d)));
%Y A344225 Cf. A344221, A344222, A344223, A344224.
%K A344225 nonn
%O A344225 1,2
%A A344225 _Seiichi Manyama_, May 12 2021