cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344235 Triangle T from the array A(k, n) giving the sums of k+1 consecutive squares starting with n^2, read as upwards antidiagonals, for k >= 0 and n >= 0.

This page as a plain text file.
%I A344235 #11 Jun 02 2021 17:43:54
%S A344235 0,1,1,5,5,4,14,14,13,9,30,30,29,25,16,55,55,54,50,41,25,91,91,90,86,
%T A344235 77,61,36,140,140,139,135,126,110,85,49,204,204,203,199,190,174,149,
%U A344235 113,64,285,285,284,280,271,255,230,194,145,81,385,385,384,380,371,355,330,294,245,181,100
%N A344235 Triangle T from the array A(k, n) giving the sums of k+1 consecutive squares starting with n^2, read as upwards antidiagonals, for k >= 0 and n >= 0.
%C A344235 Motivated by a proposal from _Charlie Marion_.
%D A344235 Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 2nd ed.; Addison-Wesley, 1994, pp. 283-290.
%F A344235 A(k, n) = Sum_{j=0..k} (n+j)^2, for k >= 0, n >= 0.
%F A344235 A(k, n) = Sum_{j=0..n+k} j^2 - (2*n-1)*n*(n-1)/3! = S(n+k) - (2*n-1)*n*(n-1)/3!, with S(n+k) = (1/3)*Sum_{j=0..2} binomial(3, j)*B_j*(n+k+1)^(3-j), with the Bernoulli numbers A027641 / A027642 (see Graham et al., pp. 283-290).
%F A344235 Recurrence for sequence of row k: A(k, n) = A(k, n-1) + (k+1)*(2*n + k - 1), n >= 1, with A(k, 0) = (2*k+1)*(k+1)*k/3!, for k >= 0.
%e A344235 The array A(k, n) begins:
%e A344235 k \ n    0   1   2   3   4   5    6    7    8    9   10 ...
%e A344235 -----------------------------------------------------------
%e A344235 0:       0   1   4   9  16  25   36   49   64   81  100 ...
%e A344235 1:       1   5  13  25  41  61   85  113  145  181  221 ...
%e A344235 2:       5  14  29  50  77 110  149  194  245  302  365 ...
%e A344235 3:      14  30  54  86 126 174  230  294  366  446  534 ...
%e A344235 4:      30  55  90 135 190 255  330  415  510  615  730 ...
%e A344235 5:      55  91 139 199 271 355  451  559  679  811  955 ...
%e A344235 6:      91 140 203 280 371 476  595  728  875 1036 1211 ...
%e A344235 7:     140 204 284 380 492 620  764  924 1100 1292 1500 ...
%e A344235 8:     204 285 384 501 636 789  960 1149 1356 1581 1824 ...
%e A344235 9:     285 385 505 645 805 985 1185 1405 1645 1905 2185 ...
%e A344235 ...
%e A344235 -----------------------------------------------------------
%e A344235 The triangle T(m, n) begins:
%e A344235 m \ n   0   1   2   3   4   5   6   7   8  9 ...
%e A344235 -----------------------------------------------------------
%e A344235 0:      0
%e A344235 1:      1   1
%e A344235 2:      5   5   4
%e A344235 3:     14  14  13   9
%e A344235 4:     30  30  29  25  16
%e A344235 5:     55  55  54  50  41  25
%e A344235 6:     91  91  90  86  77  61  36
%e A344235 7:    140 140 139 135 126 110  85  49
%e A344235 8:    204 204 203 199 190 174 149 113  64
%e A344235 9:    285 285 284 280 271 255 230 194 145 81
%e A344235 ...
%e A344235 ----------------------------------------------------------
%Y A344235 Rows of array A, diagonals of T: A000290, A001844, A005918(n+1), A027575, A027578, A027865, A260637, A276026, ...
%Y A344235 Columns of array A and T (without leading 0s): A000330, A000330(n+1), A168559(n+1), ...
%K A344235 nonn,tabl,easy
%O A344235 0,4
%A A344235 _Wolfdieter Lang_, May 27 2021