cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344237 Numbers that are the sum of five fourth powers in exactly two ways.

This page as a plain text file.
%I A344237 #8 Jul 31 2021 22:02:49
%S A344237 260,275,340,515,884,1555,2595,2660,2675,2690,2705,2755,2770,2835,
%T A344237 2930,2945,3010,3185,3299,3314,3379,3554,3923,3970,3985,4050,4115,
%U A344237 4145,4160,4210,4290,4355,4400,4465,4594,4769,4834,5075,5090,5155,5265,5330,5395,5440,5505,5570,5699,6370,6545,6580,6595,6660,6675
%N A344237 Numbers that are the sum of five fourth powers in exactly two ways.
%C A344237 Differs from A344237 at term 31 because 4225 = 2^4 + 2^4 + 2^4 + 3^4 + 8^4 = 2^4 + 4^4 + 4^4 + 6^4 + 7^4 = 3^4 + 4^4 + 6^4 + 6^4 + 6^4
%H A344237 David Consiglio, Jr., <a href="/A344237/b344237.txt">Table of n, a(n) for n = 1..20000</a>
%e A344237 340 is a member of this sequence because 340 = 1^4 + 1^4 + 1^4 + 3^4 + 4^4 = 2^4 + 3^4 + 3^4 + 3^4 + 3^4
%o A344237 (Python)
%o A344237 from itertools import combinations_with_replacement as cwr
%o A344237 from collections import defaultdict
%o A344237 keep = defaultdict(lambda: 0)
%o A344237 power_terms = [x**4 for x in range(1,50)]
%o A344237 for pos in cwr(power_terms,5):
%o A344237     tot = sum(pos)
%o A344237     keep[tot] += 1
%o A344237 rets = sorted([k for k,v in keep.items() if v == 2])
%o A344237 for x in range(len(rets)):
%o A344237     print(rets[x])
%Y A344237 Cf. A048927, A342686, A344190, A344193, A344238, A344244, A345814.
%K A344237 nonn
%O A344237 1,1
%A A344237 _David Consiglio, Jr._, May 12 2021