This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344242 #8 Jul 31 2021 22:12:02 %S A344242 16578,43234,49329,53218,54978,57154,93393,106354,107649,108754, %T A344242 138258,151219,160434,168963,173539,177699,178738,181138,183603, %U A344242 185298,195378,195859,196418,197154,197778,201683,202419,209763,211249,216594,217138,223074,234274,235554,235569,237249,237699,240834 %N A344242 Numbers that are the sum of four fourth powers in exactly three ways. %C A344242 Differs from A344241 at term 36 because 236674 = 1^4 + 2^4 + 7^4 + 22^4 = 3^4 + 6^4 + 18^4 + 19^4 = 7^4 + 14^4 + 16^4 + 19^4 = 8^4 + 16^4 + 17^4 + 17^4 %H A344242 David Consiglio, Jr., <a href="/A344242/b344242.txt">Table of n, a(n) for n = 1..20000</a> %e A344242 49329 is a member of this sequence because 49329 = 2^4 + 2^4 + 12^4 + 13^4 = 4^4 + 8^4 + 9^4 + 14^4 = 6^4 + 9^4 + 12^4 + 12^4 %o A344242 (Python) %o A344242 from itertools import combinations_with_replacement as cwr %o A344242 from collections import defaultdict %o A344242 keep = defaultdict(lambda: 0) %o A344242 power_terms = [x**4 for x in range(1,50)] %o A344242 for pos in cwr(power_terms,4): %o A344242 tot = sum(pos) %o A344242 keep[tot] += 1 %o A344242 rets = sorted([k for k,v in keep.items() if v == 3]) %o A344242 for x in range(len(rets)): %o A344242 print(rets[x]) %Y A344242 Cf. A025405, A344193, A344240, A344241, A344244, A344353. %K A344242 nonn %O A344242 1,1 %A A344242 _David Consiglio, Jr._, May 12 2021