cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344246 Number of partitions of n into 6 semiprime parts.

This page as a plain text file.
%I A344246 #10 Dec 23 2024 21:50:23
%S A344246 1,0,1,0,1,1,2,1,2,1,4,3,5,3,4,5,7,7,8,7,10,11,14,13,15,14,17,21,24,
%T A344246 22,25,27,32,33,36,38,41,43,47,54,58,57,63,68,77,78,83,89,94,97,106,
%U A344246 118,123,125,131,146,156,162,166,179,187,198,211,226,236,236,251,274,290,296
%N A344246 Number of partitions of n into 6 semiprime parts.
%H A344246 Alois P. Heinz, <a href="/A344246/b344246.txt">Table of n, a(n) for n = 24..10000</a>
%H A344246 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A344246 a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} [Omega(m) = Omega(l) = Omega(k) = Omega(j) = Omega(i) = Omega(n-i-j-k-l-m) = 2], where Omega is the number of prime factors with multiplicity (A001222) and [ ] is the (generalized) Iverson bracket.
%F A344246 a(n) = [x^n y^6] 1/Product_{j>=1} (1-y*x^A001358(j)). - _Alois P. Heinz_, May 21 2021
%Y A344246 Cf. A001222 (Omega), A001358.
%Y A344246 Column k=6 of A344447.
%K A344246 nonn
%O A344246 24,7
%A A344246 _Wesley Ivan Hurt_, May 12 2021