This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344254 #7 May 21 2021 16:46:12 %S A344254 1,0,1,0,1,1,2,1,2,1,4,3,5,3,5,5,7,8,9,7,11,12,16,15,16,16,21,23,26, %T A344254 27,31,31,38,41,45,46,50,55,62,66,71,77,85,85,97,105,113,117,124,136, %U A344254 149,156,167,179,189,199,214,235 %N A344254 Number of partitions of n into 7 semiprime parts. %H A344254 Alois P. Heinz, <a href="/A344254/b344254.txt">Table of n, a(n) for n = 28..10000</a> %H A344254 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A344254 a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} [Omega(o) = Omega(m) = Omega(l) = Omega(k) = Omega(j) = Omega(i) = Omega(n-i-j-k-l-m-o) = 2], where Omega is the number of prime factors with multiplicity (A001222) and [ ] is the (generalized) Iverson bracket. %F A344254 a(n) = [x^n y^7] 1/Product_{j>=1} (1-y*x^A001358(j)). - _Alois P. Heinz_, May 21 2021 %Y A344254 Cf. A001222 (Omega), A001358. %Y A344254 Column k=7 of A344447. %K A344254 nonn %O A344254 28,7 %A A344254 _Wesley Ivan Hurt_, May 12 2021