cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344259 For any number n with binary expansion (b(1), ..., b(k)), the binary expansion of a(n) is (b(1), ..., b(ceiling(k/2))).

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10
Offset: 0

Views

Author

Rémy Sigrist, May 13 2021

Keywords

Comments

Leading zeros are ignored.

Examples

			The first terms, alongside their binary expansion, are:
  n   a(n)  bin(n)  bin(a(n))
  --  ----  ------  ---------
   0     0       0          0
   1     1       1          1
   2     1      10          1
   3     1      11          1
   4     2     100         10
   5     2     101         10
   6     3     110         11
   7     3     111         11
   8     2    1000         10
   9     2    1001         10
  10     2    1010         10
  11     2    1011         10
  12     3    1100         11
  13     3    1101         11
  14     3    1110         11
  15     3    1111         11
		

Crossrefs

Programs

  • Mathematica
    Array[FromDigits[First@Partition[l=IntegerDigits[#,2],Ceiling[Length@l/2]],2]&,100,0] (* Giorgos Kalogeropoulos, May 14 2021 *)
  • PARI
    a(n) = n\2^(#binary(n)\2)
    
  • Python
    def a(n): b = bin(n)[2:]; return int(b[:(len(b)+1)//2], 2)
    print([a(n) for n in range(85)]) # Michael S. Branicky, May 14 2021

Formula

a(A020330(n)) = n.
a(A006995(n+1)) = A162751(n).
a(n XOR A344220(n)) = a(n) (where XOR denotes the bitwise XOR operator).