cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344261 Number of n-step walks from one of the vertices with degree 3 to itself on the four-vertex diamond graph.

Original entry on oeis.org

1, 0, 3, 4, 15, 32, 91, 220, 583, 1464, 3795, 9652, 24831, 63440, 162763, 416524, 1067575, 2733672, 7003971, 17938660, 45954543, 117709184, 301527355, 772364092, 1978473511, 5067929880, 12981823923, 33253543444, 85180839135, 218195012912, 558918369451
Offset: 0

Views

Author

M. Eren Kesim, May 13 2021

Keywords

Comments

a(n) is the number of n-step walks from vertex A to itself on the graph below.
B--C
| /|
|/ |
A--D

Examples

			Let A, B, C and D be the vertices of the four-vertex diamond graph, where A and C are the vertices with degree 3. Then, a(3) = 4 walks from A to itself are: (A, B, C, A), (A, C, B, A), (A, C, D, A) and (A, D, C, A).
		

Crossrefs

Programs

  • Maple
    f := proc(n) option remember; if n = 0 then 1; elif n = 1 then 0; elif n = 2 then 3; else 5*f(n - 2) + 4*f(n - 3); end if; end proc
  • Mathematica
    LinearRecurrence[{0, 5, 4}, {1, 0, 3}, 30] (* Amiram Eldar, May 13 2021 *)
  • Python
    def A344261_list(n):
        list = [1, 0, 3] + [0] * (n - 3)
        for i in range(3, n):
            list[i] = 5 * list[i - 2] + 4 * list[i - 3]
        return list
    print(A344261_list(31)) # M. Eren Kesim, Jul 19 2021

Formula

a(n) = a(n-1) + 4*a(n-2) - (-1)^n for n > 1.
a(n) = 5*a(n-2) + 4*a(n-3) for n > 2.
a(n) = A344236(n-1) + 2*a(n-2) + 2*A344236(n-2) for n > 1.
a(n) = A344236(n) + (-1)^n.
a(n) = A006131(n) - A344236(n).
a(n) = (A006131(n) + (-1)^n)/2.
a(n) = ((sqrt(17)-1)/(4*sqrt(17)))*((1-sqrt(17))/2)^n + ((sqrt(17)+1)/(4*sqrt(17)))*((1+sqrt(17))/2)^n + (1/2)*(-1)^n.
G.f.: (2*x^2 - 1)/(4*x^3 + 5*x^2 - 1).