cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344278 Numbers that are the sum of three fourth powers in exactly four ways.

This page as a plain text file.
%I A344278 #8 Jul 31 2021 22:17:16
%S A344278 5978882,15916082,20621042,22673378,30623138,33998258,39765362,
%T A344278 48432482,53809938,61627202,65413922,74346818,84942578,88258898,
%U A344278 95662112,103363442,117259298,128929682,131641538,137149922,143244738,155831858,158811842,167042642,174135122,175706258,188529362
%N A344278 Numbers that are the sum of three fourth powers in exactly four ways.
%C A344278 Differs from A344277 at term 37 because 292965218 = 2^4 + 109^4 + 111^4 = 21^4 + 98^4 + 119^4 = 27^4 + 94^4 + 121^4 = 34^4 + 89^4 + 123^4 = 49^4 + 77^4 + 126^4 = 61^4 + 66^4 + 127^4
%H A344278 David Consiglio, Jr., <a href="/A344278/b344278.txt">Table of n, a(n) for n = 1..7946</a>
%e A344278 20621042 is a member of this sequence because 20621042 = 5^4 + 54^4 + 59^4 = 10^4 + 51^4 + 61^4 = 25^4 + 46^4 + 63^4 = 26^4 + 39^4 + 65^4
%o A344278 (Python)
%o A344278 from itertools import combinations_with_replacement as cwr
%o A344278 from collections import defaultdict
%o A344278 keep = defaultdict(lambda: 0)
%o A344278 power_terms = [x**4 for x in range(1,50)]
%o A344278 for pos in cwr(power_terms,3):
%o A344278     tot = sum(pos)
%o A344278     keep[tot] += 1
%o A344278 rets = sorted([k for k,v in keep.items() if v == 4])
%o A344278 for x in range(len(rets)):
%o A344278     print(rets[x])
%Y A344278 Cf. A343969, A344240, A344277, A344353, A344365.
%K A344278 nonn
%O A344278 1,1
%A A344278 _David Consiglio, Jr._, May 13 2021