cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344291 Numbers whose sum of prime indices is at least twice their number of prime indices (counted with multiplicity).

This page as a plain text file.
%I A344291 #14 May 26 2021 02:30:17
%S A344291 1,3,5,7,9,10,11,13,14,15,17,19,21,22,23,25,26,27,28,29,30,31,33,34,
%T A344291 35,37,38,39,41,42,43,44,45,46,47,49,50,51,52,53,55,57,58,59,61,62,63,
%U A344291 65,66,67,68,69,70,71,73,74,75,76,77,78,79,81,82,83,84,85
%N A344291 Numbers whose sum of prime indices is at least twice their number of prime indices (counted with multiplicity).
%C A344291 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%F A344291 A056239(a(n)) >= 2*A001222(a(n)).
%e A344291 The sequence of terms together with their prime indices begins:
%e A344291      1: {}       25: {3,3}      43: {14}       62: {1,11}
%e A344291      3: {2}      26: {1,6}      44: {1,1,5}    63: {2,2,4}
%e A344291      5: {3}      27: {2,2,2}    45: {2,2,3}    65: {3,6}
%e A344291      7: {4}      28: {1,1,4}    46: {1,9}      66: {1,2,5}
%e A344291      9: {2,2}    29: {10}       47: {15}       67: {19}
%e A344291     10: {1,3}    30: {1,2,3}    49: {4,4}      68: {1,1,7}
%e A344291     11: {5}      31: {11}       50: {1,3,3}    69: {2,9}
%e A344291     13: {6}      33: {2,5}      51: {2,7}      70: {1,3,4}
%e A344291     14: {1,4}    34: {1,7}      52: {1,1,6}    71: {20}
%e A344291     15: {2,3}    35: {3,4}      53: {16}       73: {21}
%e A344291     17: {7}      37: {12}       55: {3,5}      74: {1,12}
%e A344291     19: {8}      38: {1,8}      57: {2,8}      75: {2,3,3}
%e A344291     21: {2,4}    39: {2,6}      58: {1,10}     76: {1,1,8}
%e A344291     22: {1,5}    41: {13}       59: {17}       77: {4,5}
%e A344291     23: {9}      42: {1,2,4}    61: {18}       78: {1,2,6}
%e A344291 For example, the prime indices of 45 are {2,2,3} with sum 7 >= 2*3, so 45 is in the sequence.
%t A344291 Select[Range[100],PrimeOmega[#]<=Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]/2&]
%Y A344291 The partitions with these Heinz numbers are counted by A110618.
%Y A344291 The conjugate version is A322109.
%Y A344291 The case of equality is A340387, counted by A035363.
%Y A344291 The 5-smooth case is A344293, with non-3-smooth case A344294.
%Y A344291 The opposite version is A344296.
%Y A344291 The conjugate opposite version is A344414.
%Y A344291 The conjugate case of equality is A344415.
%Y A344291 A001221 counts distinct prime indices.
%Y A344291 A001222 counts prime indices with multiplicity.
%Y A344291 A056239 adds up prime indices, row sums of A112798.
%Y A344291 Cf. A001358, A025065, A084127, A244990, A344292.
%K A344291 nonn
%O A344291 1,2
%A A344291 _Gus Wiseman_, May 15 2021