This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344291 #14 May 26 2021 02:30:17 %S A344291 1,3,5,7,9,10,11,13,14,15,17,19,21,22,23,25,26,27,28,29,30,31,33,34, %T A344291 35,37,38,39,41,42,43,44,45,46,47,49,50,51,52,53,55,57,58,59,61,62,63, %U A344291 65,66,67,68,69,70,71,73,74,75,76,77,78,79,81,82,83,84,85 %N A344291 Numbers whose sum of prime indices is at least twice their number of prime indices (counted with multiplicity). %C A344291 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %F A344291 A056239(a(n)) >= 2*A001222(a(n)). %e A344291 The sequence of terms together with their prime indices begins: %e A344291 1: {} 25: {3,3} 43: {14} 62: {1,11} %e A344291 3: {2} 26: {1,6} 44: {1,1,5} 63: {2,2,4} %e A344291 5: {3} 27: {2,2,2} 45: {2,2,3} 65: {3,6} %e A344291 7: {4} 28: {1,1,4} 46: {1,9} 66: {1,2,5} %e A344291 9: {2,2} 29: {10} 47: {15} 67: {19} %e A344291 10: {1,3} 30: {1,2,3} 49: {4,4} 68: {1,1,7} %e A344291 11: {5} 31: {11} 50: {1,3,3} 69: {2,9} %e A344291 13: {6} 33: {2,5} 51: {2,7} 70: {1,3,4} %e A344291 14: {1,4} 34: {1,7} 52: {1,1,6} 71: {20} %e A344291 15: {2,3} 35: {3,4} 53: {16} 73: {21} %e A344291 17: {7} 37: {12} 55: {3,5} 74: {1,12} %e A344291 19: {8} 38: {1,8} 57: {2,8} 75: {2,3,3} %e A344291 21: {2,4} 39: {2,6} 58: {1,10} 76: {1,1,8} %e A344291 22: {1,5} 41: {13} 59: {17} 77: {4,5} %e A344291 23: {9} 42: {1,2,4} 61: {18} 78: {1,2,6} %e A344291 For example, the prime indices of 45 are {2,2,3} with sum 7 >= 2*3, so 45 is in the sequence. %t A344291 Select[Range[100],PrimeOmega[#]<=Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]/2&] %Y A344291 The partitions with these Heinz numbers are counted by A110618. %Y A344291 The conjugate version is A322109. %Y A344291 The case of equality is A340387, counted by A035363. %Y A344291 The 5-smooth case is A344293, with non-3-smooth case A344294. %Y A344291 The opposite version is A344296. %Y A344291 The conjugate opposite version is A344414. %Y A344291 The conjugate case of equality is A344415. %Y A344291 A001221 counts distinct prime indices. %Y A344291 A001222 counts prime indices with multiplicity. %Y A344291 A056239 adds up prime indices, row sums of A112798. %Y A344291 Cf. A001358, A025065, A084127, A244990, A344292. %K A344291 nonn %O A344291 1,2 %A A344291 _Gus Wiseman_, May 15 2021