A344292 Numbers m whose sum of prime indices A056239(m) is even and is at most twice the number of prime factors counted with multiplicity A001222(m).
1, 3, 4, 9, 10, 12, 16, 27, 28, 30, 36, 40, 48, 64, 81, 84, 88, 90, 100, 108, 112, 120, 144, 160, 192, 208, 243, 252, 256, 264, 270, 280, 300, 324, 336, 352, 360, 400, 432, 448, 480, 544, 576, 624, 640, 729, 756, 768, 784, 792, 810, 832, 840, 880, 900, 972
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 1: {} 84: {1,1,2,4} 3: {2} 88: {1,1,1,5} 4: {1,1} 90: {1,2,2,3} 9: {2,2} 100: {1,1,3,3} 10: {1,3} 108: {1,1,2,2,2} 12: {1,1,2} 112: {1,1,1,1,4} 16: {1,1,1,1} 120: {1,1,1,2,3} 27: {2,2,2} 144: {1,1,1,1,2,2} 28: {1,1,4} 160: {1,1,1,1,1,3} 30: {1,2,3} 192: {1,1,1,1,1,1,2} 36: {1,1,2,2} 208: {1,1,1,1,6} 40: {1,1,1,3} 243: {2,2,2,2,2} 48: {1,1,1,1,2} 252: {1,1,2,2,4} 64: {1,1,1,1,1,1} 256: {1,1,1,1,1,1,1,1} 81: {2,2,2,2} 264: {1,1,1,2,5}
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],EvenQ[Total[primeMS[#]]]&&PrimeOmega[#]>=Total[primeMS[#]]/2&]
Comments