This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344293 #12 May 26 2021 02:30:25 %S A344293 1,3,5,9,10,15,25,27,30,45,50,75,81,90,100,125,135,150,225,243,250, %T A344293 270,300,375,405,450,500,625,675,729,750,810,900,1000,1125,1215,1250, %U A344293 1350,1500,1875,2025,2187,2250,2430,2500,2700,3000,3125,3375,3645,3750,4050 %N A344293 5-smooth numbers n whose sum of prime indices A056239(n) is at least twice the number of prime indices A001222(n). %C A344293 A number is 5-smooth if its prime divisors are all <= 5. %C A344293 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %F A344293 Intersection of A051037 and A344291. %e A344293 The sequence of terms together with their prime indices begins: %e A344293 1: {} 125: {3,3,3} %e A344293 3: {2} 135: {2,2,2,3} %e A344293 5: {3} 150: {1,2,3,3} %e A344293 9: {2,2} 225: {2,2,3,3} %e A344293 10: {1,3} 243: {2,2,2,2,2} %e A344293 15: {2,3} 250: {1,3,3,3} %e A344293 25: {3,3} 270: {1,2,2,2,3} %e A344293 27: {2,2,2} 300: {1,1,2,3,3} %e A344293 30: {1,2,3} 375: {2,3,3,3} %e A344293 45: {2,2,3} 405: {2,2,2,2,3} %e A344293 50: {1,3,3} 450: {1,2,2,3,3} %e A344293 75: {2,3,3} 500: {1,1,3,3,3} %e A344293 81: {2,2,2,2} 625: {3,3,3,3} %e A344293 90: {1,2,2,3} 675: {2,2,2,3,3} %e A344293 100: {1,1,3,3} 729: {2,2,2,2,2,2} %t A344293 Select[Range[1000],PrimeOmega[#]<=Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]/2&&Max@@First/@FactorInteger[#]<=5&] %Y A344293 Allowing any number of parts and sum gives A051037, counted by A001399. %Y A344293 These are Heinz numbers of the partitions counted by A266755. %Y A344293 Allowing parts > 5 gives A344291, counted by A110618. %Y A344293 The non-3-smooth case is A344294, counted by A325691. %Y A344293 Requiring the sum of prime indices to be even gives A344295. %Y A344293 A000070 counts non-multigraphical partitions, ranked by A344292. %Y A344293 A025065 counts partitions of n with >= n/2 parts, ranked by A344296. %Y A344293 A035363 counts partitions of n with n/2 parts, ranked by A340387. %Y A344293 A056239 adds up prime indices, row sums of A112798. %Y A344293 A300061 ranks partitions of even numbers, with 5-smooth case A344297. %Y A344293 Cf. A000041, A000244, A026811, A080193, A244990, A261144, A279622. %K A344293 nonn %O A344293 1,2 %A A344293 _Gus Wiseman_, May 16 2021