This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344294 #17 Jun 26 2021 12:11:42 %S A344294 5,10,15,25,30,45,50,75,90,100,125,135,150,225,250,270,300,375,405, %T A344294 450,500,625,675,750,810,900,1000,1125,1215,1250,1350,1500,1875,2025, %U A344294 2250,2430,2500,2700,3000,3125,3375,3645,3750,4050,4500,5000,5625,6075,6250 %N A344294 5-smooth but not 3-smooth numbers k such that A056239(k) >= 2*A001222(k). %C A344294 A number is d-smooth iff its prime divisors are all <= d. %C A344294 A prime index of k is a number m such that prime(m) divides k, and the multiset of prime indices of k is row k of A112798. This row has length A001222(k) and sum A056239(k). %F A344294 Intersection of A080193 and A344291. %e A344294 The sequence of terms together with their prime indices begins: %e A344294 5: {3} 270: {1,2,2,2,3} %e A344294 10: {1,3} 300: {1,1,2,3,3} %e A344294 15: {2,3} 375: {2,3,3,3} %e A344294 25: {3,3} 405: {2,2,2,2,3} %e A344294 30: {1,2,3} 450: {1,2,2,3,3} %e A344294 45: {2,2,3} 500: {1,1,3,3,3} %e A344294 50: {1,3,3} 625: {3,3,3,3} %e A344294 75: {2,3,3} 675: {2,2,2,3,3} %e A344294 90: {1,2,2,3} 750: {1,2,3,3,3} %e A344294 100: {1,1,3,3} 810: {1,2,2,2,2,3} %e A344294 125: {3,3,3} 900: {1,1,2,2,3,3} %e A344294 135: {2,2,2,3} 1000: {1,1,1,3,3,3} %e A344294 150: {1,2,3,3} 1125: {2,2,3,3,3} %e A344294 225: {2,2,3,3} 1215: {2,2,2,2,2,3} %e A344294 250: {1,3,3,3} 1250: {1,3,3,3,3} %t A344294 Select[Range[1000],PrimeOmega[#]<=Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]/2&&Max@@First/@FactorInteger[#]==5&] %Y A344294 Allowing any number of parts and sum gives A080193, counted by A069905. %Y A344294 The partitions with these Heinz numbers are counted by A325691. %Y A344294 Relaxing the smoothness conditions gives A344291, counted by A110618. %Y A344294 Allowing 3-smoothness gives A344293, counted by A266755. %Y A344294 A025065 counts partitions of n with at least n/2 parts, ranked by A344296. %Y A344294 A035363 counts partitions of n whose length is n/2, ranked by A340387. %Y A344294 A051037 lists 5-smooth numbers (complement: A279622). %Y A344294 A056239 adds up prime indices, row sums of A112798. %Y A344294 A257993 gives the least gap of the partition with Heinz number n. %Y A344294 A300061 lists numbers with even sum of prime indices (5-smooth: A344297). %Y A344294 A342050/A342051 list Heinz numbers of partitions with even/odd least gap. %Y A344294 Cf. A000041, A001399, A002865, A027336, A244990, A261144, A344295. %K A344294 nonn %O A344294 1,1 %A A344294 _Gus Wiseman_, May 16 2021