cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344297 Heinz numbers of integer partitions of even numbers with no part greater than 3.

This page as a plain text file.
%I A344297 #6 May 20 2021 23:05:44
%S A344297 1,3,4,9,10,12,16,25,27,30,36,40,48,64,75,81,90,100,108,120,144,160,
%T A344297 192,225,243,250,256,270,300,324,360,400,432,480,576,625,640,675,729,
%U A344297 750,768,810,900,972,1000,1024,1080,1200,1296,1440,1600,1728,1875,1920
%N A344297 Heinz numbers of integer partitions of even numbers with no part greater than 3.
%C A344297 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
%F A344297 Intersection of A051037 and A300061.
%e A344297 The sequence of terms together with their prime indices begins:
%e A344297        1: {}                 81: {2,2,2,2}
%e A344297        3: {2}                90: {1,2,2,3}
%e A344297        4: {1,1}             100: {1,1,3,3}
%e A344297        9: {2,2}             108: {1,1,2,2,2}
%e A344297       10: {1,3}             120: {1,1,1,2,3}
%e A344297       12: {1,1,2}           144: {1,1,1,1,2,2}
%e A344297       16: {1,1,1,1}         160: {1,1,1,1,1,3}
%e A344297       25: {3,3}             192: {1,1,1,1,1,1,2}
%e A344297       27: {2,2,2}           225: {2,2,3,3}
%e A344297       30: {1,2,3}           243: {2,2,2,2,2}
%e A344297       36: {1,1,2,2}         250: {1,3,3,3}
%e A344297       40: {1,1,1,3}         256: {1,1,1,1,1,1,1,1}
%e A344297       48: {1,1,1,1,2}       270: {1,2,2,2,3}
%e A344297       64: {1,1,1,1,1,1}     300: {1,1,2,3,3}
%e A344297       75: {2,3,3}           324: {1,1,2,2,2,2}
%t A344297 Select[Range[1000],EvenQ[Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]]&&Max@@First/@FactorInteger[#]<=Prime[3]&]
%Y A344297 These partitions are counted by A007980.
%Y A344297 Including partitions of odd numbers gives A051037 (complement: A279622).
%Y A344297 Allowing parts > 3 gives A300061.
%Y A344297 A001358 lists semiprimes.
%Y A344297 A035363 counts partitions whose length is half their sum, ranked by A340387.
%Y A344297 A056239 adds up prime indices, row sums of A112798.
%Y A344297 Cf. A001399, A002620, A030229, A080193, A244990, A261144, A266755, A344291, A344293, A344294.
%K A344297 nonn
%O A344297 1,2
%A A344297 _Gus Wiseman_, May 16 2021