This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A344297 #6 May 20 2021 23:05:44 %S A344297 1,3,4,9,10,12,16,25,27,30,36,40,48,64,75,81,90,100,108,120,144,160, %T A344297 192,225,243,250,256,270,300,324,360,400,432,480,576,625,640,675,729, %U A344297 750,768,810,900,972,1000,1024,1080,1200,1296,1440,1600,1728,1875,1920 %N A344297 Heinz numbers of integer partitions of even numbers with no part greater than 3. %C A344297 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. %F A344297 Intersection of A051037 and A300061. %e A344297 The sequence of terms together with their prime indices begins: %e A344297 1: {} 81: {2,2,2,2} %e A344297 3: {2} 90: {1,2,2,3} %e A344297 4: {1,1} 100: {1,1,3,3} %e A344297 9: {2,2} 108: {1,1,2,2,2} %e A344297 10: {1,3} 120: {1,1,1,2,3} %e A344297 12: {1,1,2} 144: {1,1,1,1,2,2} %e A344297 16: {1,1,1,1} 160: {1,1,1,1,1,3} %e A344297 25: {3,3} 192: {1,1,1,1,1,1,2} %e A344297 27: {2,2,2} 225: {2,2,3,3} %e A344297 30: {1,2,3} 243: {2,2,2,2,2} %e A344297 36: {1,1,2,2} 250: {1,3,3,3} %e A344297 40: {1,1,1,3} 256: {1,1,1,1,1,1,1,1} %e A344297 48: {1,1,1,1,2} 270: {1,2,2,2,3} %e A344297 64: {1,1,1,1,1,1} 300: {1,1,2,3,3} %e A344297 75: {2,3,3} 324: {1,1,2,2,2,2} %t A344297 Select[Range[1000],EvenQ[Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]]&&Max@@First/@FactorInteger[#]<=Prime[3]&] %Y A344297 These partitions are counted by A007980. %Y A344297 Including partitions of odd numbers gives A051037 (complement: A279622). %Y A344297 Allowing parts > 3 gives A300061. %Y A344297 A001358 lists semiprimes. %Y A344297 A035363 counts partitions whose length is half their sum, ranked by A340387. %Y A344297 A056239 adds up prime indices, row sums of A112798. %Y A344297 Cf. A001399, A002620, A030229, A080193, A244990, A261144, A266755, A344291, A344293, A344294. %K A344297 nonn %O A344297 1,2 %A A344297 _Gus Wiseman_, May 16 2021