cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344298 Dirichlet g.f.: Product_{k>=2} (1 + k^(-s))^(9^(k-1)).

This page as a plain text file.
%I A344298 #7 May 14 2021 12:37:52
%S A344298 1,9,81,765,6561,59778,531441,4789614,43049961,387479538,3486784401,
%T A344298 31381653015,282429536481,2541870611298,22876792986402,
%U A344298 205891175433096,1853020188851841,16677182091899187,150094635296999121,1350851721164795655,12157665459099975522,109418989162893418818
%N A344298 Dirichlet g.f.: Product_{k>=2} (1 + k^(-s))^(9^(k-1)).
%t A344298 dircon[v_, w_] := Module[{lv = Length[v], lw = Length[w], fv, fw}, fv[n_] := If[n <= lv, v[[n]], 0]; fw[n_] := If[n <= lw, w[[n]], 0]; Table[ DirichletConvolve[fv[n], fw[n], n, m], {m, Min[lv, lw]}]];
%t A344298 a[n_] := Module[{A, v, w, m}, If[n<1, 0, v = Table[Boole[k == 1], {k, n}]; For[k = 2, k <= n, k++, m = Length[IntegerDigits[n, k]] - 1; A = (1 + x)^(9^(k - 1)) + x*O[x]^m // Normal; w = Table[0, {n}]; For[i = 0, i <= m, i++, w[[k^i]] = Coefficient[A, x, i]]; v = dircon[v, w]]; v[[n]]]];
%t A344298 Array[a, 22] (* after _Jean-François Alcover_ in A007896 *)
%Y A344298 Cf. A045778, A050368, A344253, A344265, A344266, A344267, A344268, A344269, A344270, A344271.
%K A344298 nonn
%O A344298 1,2
%A A344298 _Ilya Gutkovskiy_, May 14 2021